碳蜂窝结构力学性能的分子动力学研究Molecular Dynamics Simulation of Mechanical Properties of Carbon Honeycomb
谢璐;安豪杰;秦勤;范文宝;郑林;
摘要(Abstract):
采用分子动力学方法系统地研究了碳蜂窝结构在不同方向、温度和应变速率下的拉伸力学性能。结果表明:碳蜂窝结构为各向异性材料,其管轴方向强度最高,常温下(300K)达到553GPa,Young’s模量更是达到5 300GPa,是另2个方向的10倍以上;碳蜂窝在扶手椅方向上的最大失效应变达到了0.321 2,具有相当好的延展性;温度对力学性能影响明显,在一定范围内降低温度会显著提升最大拉伸强度。
关键词(KeyWords): 碳蜂窝;分子动力学模拟;力学性能;各向异性
基金项目(Foundation): 国家自然科学基金(51375041,21703007);; 中央高校基本科研业务费(FRF-TP-16-044A1)
作者(Author): 谢璐;安豪杰;秦勤;范文宝;郑林;
Email:
参考文献(References):
- [1] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nat Mater,2007, 6:183.
- [2]叶振强,曹炳阳,过增元.石墨烯的声子热学性质研究[J].物理学报, 2014, 63(15):303–309.YE Zhengqian, CAO Bingyang, GUO Zengyuan. Acta Phys Sin(in Chinese), 2014, 63(15):303–309.
- [3]王宇,王秀喜,倪向贵,等.单壁碳纳米管轴向压缩变形的研究[J].物理学报, 2003(12):3120–3124.WANG Yu, WANG Xiuxi, NI Xianggui, et al. Acta Phys Sin(in Chinese), 2003(12):3120–3124.
- [4] PONCHARAL P. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Science, 1999, 283(5407):1513–1516.
- [5] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature,1996, 381:678.
- [6] DIKIN D A, STANKOVICH S, ZIMNEY E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448:457.
- [7] GUO S J, YANG Q S, HE X Q, et al. Design of 3D carbon nanotube-based nanostructures and prediction of their extra-strong mechanical properties under tension and compression[J]. Comp Mater Sci, 2014, 85:324–331.
- [8] LIU X, LU W, AYALA O M, et al. Microstructural evolution of carbon nanotube fibers:Deformation and strength mechanism[J].Nanoscale, 2013, 5(5):2002–2008.
- [9] PARK N, IHM J. Electronic structure and mechanical stability of the graphitic honeycomb lattice[J]. Phys Rev B, 2000, 62(11):7614–7618.
- [10] CHEN Y, XIE Y, GAO Y, et al. Nexus networks in carbon honeycombs[J]. Phys Rev Mater, 2018, 2(4):044205.
- [11] WANG S, WU D, YANG B, et al. Semimetallic carbon honeycombs:New three-dimensional graphene allotropes with Dirac cones[J].Nanoscale, 2018, 10(6):2748–2754.
- [12] KRAINYUKOVA N V. Capturing gases in carbon honeycomb[J]. J Low Temp Phys, 2016, 187(1/2):90–104.
- [13] HU J, WU W, ZHONG C, et al. Three-dimensional honeycomb carbon:Junction line distortion and novel emergent fermions[J]. Carbon, 2019,141:417–426.
- [14] KUC A, SEIFERT G. Hexagon-preserving carbon foams:Properties of hypothetical carbon allotropes[J]. Phys Rev B, 2006, 74(21):214104.
- [15] KRAINYUKOVA N V, ZUBAREV E N. Carbon honeycomb high capacity storage for gaseous and liquid species[J]. Phys Rev Lett, 2016,116(5):055501.
- [16] PANG Z, GU X, WEI Y, et al. Bottom-up design of three-dimensional carbon-honeycomb with superb specific strength and high thermal conductivity[J]. Nano Lett, 2017, 17(1):179–185.
- [17] ZHANG Z, KUTANA A, YANG Y, et al. Nanomechanics of carbon honeycomb cellular structures[J]. Carbon, 2017, 113:26–32.
- [18] WEI Z, YANG F, BI K, et al. Thermal transport properties of all-sp2three-dimensional graphene:Anisotropy, size and pressure effects[J].Carbon, 2017, 113:212–218.
- [19] GAO Y, CHEN Y, ZHONG C, et al. Electron and phonon properties and gas storage in carbon honeycombs[J]. Nanoscale, 2016, 8(26):12863–12868.
- [20] ZHANG J, WANG C. Buckling of carbon honeycombs:A new mechanism for molecular mass transportation[J]. J Phys Chem C, 2017,121(14):8196–8203.
- [21] GU X, PANG Z, WEI Y, et al. On the influence of junction structures on the mechanical and thermal properties of carbon honeycombs[J].Carbon, 2017, 119:278–286.
- [22] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1):1–19.
- [23] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool[J]. Model Simul Mater Sc, 2010, 18(1):015012.
- [24] DONALD W B, OLGA A S, JUDITH A H, et al. A second-generation reactive empirical bond order(REBO)potential energy expression for hydrocarbons[J]. J Phys-Condens Mater, 2002, 14(4):783.
- [25] DENG B, HOU J, ZHU H, et al. The normal-auxeticity mechanical phase transition in graphene[J]. 2D Mater, 2017, 4(2):021020.
- [26] EVANS D J, HOLIAN B L. The Nose–Hoover thermostat[J]. J Chem Phys, 1985, 83(8):4069–4074.
- [27] TUCKERMAN M E, ALEJANDRE J, ROBERTO L-R, et al. A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble[J]. J Phys A-Math Theor, 2006, 39(19):5629.