nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2024 04 v.52;No.421 1451-1459
反铁电材料铪酸铅研究进展
基金项目(Foundation): 国家自然科学基金(12172093);; 广东省自然科学基金(2021A1515012607)
邮箱(Email): xgtang@gdut.edu.cn;
DOI: 10.14062/j.issn.0454-5648.20230834
中文作者单位:

广东工业大学物理与光电工程学院;西安电子科技大学先进材料与纳米技术学院;

摘要(Abstract):

反铁电材料因具有独特的双电滞回线特征而受到了学术界广泛关注。目前反铁电材料相关研究的深入性和全面性不足,仍阻碍了其在更多领域的应用。因此,进一步研究和开发反铁电材料,对于推动科技的发展和社会的进步具有重要意义。本文综述了反铁电材料铪酸铅的研究现状,发展趋势及应用前景。详细介绍了铪酸铅基材料的基本储能性能参数、晶体结构、相变机制、离子掺杂改性以及制备工艺等。研究表明:铪酸铅反铁电材料具有快速充放电,极高的功率密度和能量密度以及杰出的电卡效应,这在储能和固态制冷等领域具有广泛的应用前景。

关键词(KeyWords): 铪酸铅;;反铁电;;相变机制;;储能;;电卡效应
参考文献

[1] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019,365(6453):578–582.

[2] PALNEEDI H, PEDDIGARI M, HWANG G T, et al.High-performance dielectric ceramic films for energy storage capacitors:Progress and outlook[J]. Adv Funct Mater, 2018, 28(42):1803665.

[3] TANAKA M, SAITO R, TSUZUKI K. Electron microscopic studies on domain structure of PbZrO3[J]. Jpn J Appl Phys, 1982, 21(2R):291.

[4] SHEN G J, SHEN K. Electron microscope study of domains in PbZrO3[J]. J Mater Sci, 1999, 34(20):5153–5156.

[5] WEI X K, JIA C L, DU H C, et al. An unconventional transient phase with cycloidal order of polarization in energy-storage antiferroelectric PbZrO3[J]. Adv Mater, 2020, 32(9):e1907208.

[6] LIU X H, ZHU J Y, LI Y, et al. High-performance PbZrO3-based antiferroelectric multilayer capacitors based on multiple enhancement strategy[J]. Chem Eng J, 2022, 446:136729.

[7] ZHANG T D, SHI Z Z, YIN C, et al. Tunable polarization-drived superior energy storage performance in PbZrO 3 thin films[J]. J Adv Ceram, 2023, 12(5):930–942.

[8] FESENKO O E, BALYUNIS L E. The temperature–electric field phase diagram of lead hafnate[J]. Ferroelectrics, 1980, 29(1):95–98.

[9] SHIRANE Ge, PEPINSHY R. Phase transitions in antiferroelectric PbHfO3[J]. Phys Rev, 1953, 91(4):812–815.

[10] RASHID M, MAHMOOD Q, BABAR F, et al. Study of mechanical,electronic and optical properties of PbZrO3 and Pb HfO3; DFT approach[J]. Mater Res Express, 2019, 6(6):066311.

[11] SAMARA G A. Pressure and temperature dependence of the dielectric properties and phase transitions of the antiferroelectric perovskites:PbZrO3 and PbHfO3[J]. Phys Rev B, 1970, 1(9):3777.

[12] CORKER D L, GLAZER A M, KAMINSKY W, et al. Investigation into the crystal structure of the perovskite lead hafnate, PbHfO3[J].Acta Crystallogr Sect B, 1998, 54(1):18–28.

[13] GE P Z, TANG X G, MENG K, et al. Ultrahigh energy storage density and superior discharge power density in a novel antiferroelectric lead hafnate[J]. Mater Today Phys, 2022, 24:100681.

[14] DONG Y Z, ZOU K, LIANG R H, et al. Review of BiScO3–PbTiO3piezoelectric materials for high temperature applications:Fundamental,progress, and perspective[J]. Prog Mater Sci, 2023, 132:101026.

[15] GE P Z, TANG X G, MENG K, et al. Energy storage density and charge–discharge properties of PbHf1-xSnxO3 antiferroelectric ceramics[J]. Chem Eng J, 2022, 429:132540.

[16] LI S F, GE P Z, TANG H, et al. Energy storage and dielectric properties of PbHfO3 antiferroelectric ceramics[J]. ACS Appl Energy Mater, 2022, 5(10):12174–12182.

[17] QI H, ZUO R Z, XIE A W, et al. Excellent energy-storage properties of Na NbO3-based lead-free antiferroelectric orthorhombic P-phase(Pbma)ceramics with repeatable double polarization-field loops[J]. J Eur Ceram Soc, 2019, 39(13):3703–3709.

[18] WANG H S, LIU Y C, YANG T Q, et al. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions[J]. Adv Funct Mater, 2019, 29(7):1807321.

[19] WEI J, YANG T Q, WANG H S. Excellent energy storage and charge–discharge performances in PbHfO3 antiferroelectric ceramics[J].J Eur Ceram Soc, 2019, 39(2–3):624–630.

[20] FAN Z M, MA T, WEI J, et al. TEM investigation of the domain structure in PbHfO3 and PbZrO3 antiferroelectric perovskites[J]. J Mater Sci, 2020, 55(12):4953–4961.

[21] CHAUHAN V, WANG B X, YE Z G. Structure, antiferroelectricity and energy-storage performance of lead hafnate in a wide temperature range[J]. Materials, 2023, 16(11):4144.

[22] TSAI M F, ZHENG Y Z, LU S C, et al. Antiferroelectric anisotropy of epitaxial PbHfO3 films for flexible energy storage[J]. Adv Funct Mater,2021, 31(42):2105060.

[23] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102:72–108.

[24] ACHARYA M, BANYAS E, RAMESH M, et al. Exploring the Pb1–xSrxHfO3 system and potential for high capacitive energy storage density and efficiency[J]. Adv Mater, 2022, 34(1):2105967.

[25] XU R, ZHU Q S, XU Z, et al. High energy and power density achieved in Pb0.94La0.04HfO3 antiferroelectric ceramics with multiple phase transition[J]. Appl Phys Lett, 2022, 120(5):052904.

[26] HU J, LI W H, TANG X G, et al. Enhancement of energy storage density and efficiency of PbHfO3 doped with La antiferroelectric thin films[J]. ACS Appl Energy Mater, 2023, 6(1):120–126.

[27] MA C H, LIAO Y K, ZHENG Y Z, et al. Synthesis of a new ferroelectric relaxor based on a combination of antiferroelectric and paraelectric systems[J]. ACS Appl Mater Interfaces, 2022, 14(19):22278–22286.

[28] NADEEM J, KIRAN Z, ZEBA I, et al. A detailed computational study to investigate the influence of metals(Bi, Sn, Ti)substitution on phase transition, electronic band structure and their implications on optical,elastic, anisotropic and mechanical properties of PbHfO3[J]. Opt Quantum Electron, 2022, 55(1):45.

[29] JANKOWSKA-SUMARA I, KO J H, MAJCHROWSKI A. The complexity of structural phase transitions in Pb(Hf0.92Sn0.08)O3 single crystals[J]. J Am Ceram Soc, 2021, 104(11):5990–6001.

[30] JANKOWSKA-SUMARA I, PA?CIAK M, K?DZIO?KA-GAWE?M,et al. Local properties and phase transitions in Sn doped antiferroelectric PbHfO3 single crystal[J]. J Phys Condens Matter, 2020,32(43):435402.

[31] PIEKARA A, KO J H, LEE J W, et al. Effect of Sn addition on thermodynamic, dielectric, optical, and acoustic properties of lead hafnate[J]. Phys Status Solidi A, 2020, 217(12):1900958.

[32] LIU Z G, GE P Z, TANG H, et al. High-temperature dielectric properties and impedance spectroscopy of PbHf1–xSnxO3 ceramics[J].IET Nanodielectr, 2020, 3(4):131–137.

[33] GE P Z, TANG X G, LIU Q X, et al. Superior energy and power density realized in Pb(Hf1–xTix)O3 system at low electric field[J].Energy Mater Adv, 2023, 4:0025.

[34] SONG J D, IWAMOTO Y, IIJIMA T, et al. Electrical properties of antiferroelectric Pb(Zr, Hf)O3 films fabricated by chemical solution deposition[J]. Jpn J Appl Phys, 2022, 61:SN1010.

[35] CHAO W N, WEI J, YANG T Q, et al. Phase transition behavior of Pb(Hf, Sn, Ti, Nb)O3 ceramics at morphotropic phase boundary[J]. J Am Ceram Soc, 2020, 103(3):2185–2192.

[36] XU R, WANG M J, ZHU Q S, et al. Investigation on antiferroelectricity of Pb0.97La0.02(Hf1–xTix)O3 ceramics with low Ti content(0≤x≤0.1)[J]. J Am Ceram Soc, 2022, 105(12):7438–7445.

[37] CHAO W N, TIAN L Y, YANG T Q, et al. Excellent energy storage performance achieved in novel PbHfO3-based antiferroelectric ceramics via grain size engineering[J]. Chem Eng J, 2022, 433:133814.

[38] GUO J J, YANG T Q. Giant energy storage density in Ba, La Co-doped PbHfO3-based antiferroelectric ceramics by a rolling process[J]. J Alloys Compd, 2021, 888:161539.

[39] HANRAHAN B, MILESI-BRAULT C, LEFF A, et al. The other model antiferroelectric:PbHfO3 thin films from ALD precursors[J]. APL Mater, 2021, 9(2):021108.

[40] HUANG X X, ZHANG T F, WANG W, et al. Tailoring energy-storage performance in antiferroelectric PbHfO3 thin films[J]. Mater Des, 2021,204:109666.

[41] NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range[J]. Nature,2019, 575(7783):468–472.

[42] LIU Y, SCOTT J F, DKHIL B. Direct and indirect measurements on electrocaloric effect:Recent developments and perspectives[J]. Appl Phys Rev, 2016, 3(3):031102.

[43] ZHANG Y L, LI W L, WANG Z Y, et al. Perovskite Sr1–x(Na0.5Bi0.5)xTi0.99Mn0.01O3 thin films with defect dipoles for high energy-storage and electrocaloric performance[J]. ACS Appl Mater Interfaces, 2019, 11(41):37947–37954.

[44] PENG B L, ZHANG Q, GANG B, et al. Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film[J]. Energy Environ Sci, 2019, 12(5):1708–1717.

[45] HUANG X X, ZHANG T F, GAO R Z, et al. Large room temperature negative electrocaloric effect in novel antiferroelectric PbHfO3 films[J].ACS Appl Mater Interfaces, 2021, 13(18):21331–21337.

[46] HUANG X X, GE P Z, ZHANG T F, et al. Composition-tailor induced electrocaloric effect near room temperature in(Pb, Ba)HfO3 films[J]. J Materiomics, 2023, 9(3):502–509.

[47] TACHIBANA M, MORI T K. High-temperature thermal conductivity of ferroelectric and antiferroelectric perovskites[J]. Appl Phys Express,2022, 15(12):121003.

基本信息:

DOI:10.14062/j.issn.0454-5648.20230834

中图分类号:TM53;TB34

引用信息:

[1]李东亮,唐新桂,姜登辉等.反铁电材料铪酸铅研究进展[J].硅酸盐学报,2024,52(04):1451-1459.DOI:10.14062/j.issn.0454-5648.20230834.

基金信息:

国家自然科学基金(12172093);; 广东省自然科学基金(2021A1515012607)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文