nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 11, v.49 2538-2548
3D打印纤维增强混凝土材料研究进展
基金项目(Foundation): 国家自然科学基金面上项目(51778461,21978504); 上海市科学技术委员会科研计划项目(19DZ1202500)
邮箱(Email):
DOI: 10.14062/j.issn.0454-5648.20210213
摘要:

混凝土3D打印是一种基于三维建筑模型的快速成型技术。由于无需模具、劳动力需求低、施工速度快等特点,3D打印在近10年里受到了越来越多的关注。纤维增强混凝土具备传统混凝土的可塑性和成本优势,同时具有优异的抗拉性能和裂缝控制能力,因此3D打印纤维增强混凝土也成为了世界范围内的研究重点之一。主要从可打印纤维增强混凝土材料、打印中的工作性能和硬化后的力学性能3个方面详细介绍了3D打印纤维增强混凝土的国内外研究现状,并讨论了3D打印纤维增强混凝土未来发展的机遇以及所面临的挑战。

Abstract:

3D concrete printing is a rapid prototyping technology based on 3-dimensional building information model. 3D printing has attracted more attention in the latest decade due to its none-framework, low labor cost and quick construction. Fiber reinforced concrete(FRC) possesses a superior tensile property, a crack control ability, and some advantages in shapeability and cost control as conventional concrete. 3D-FRC printing thus becomes a hot research topic. Review, recent development on 3D-FRC printing was comprehensively represented, including, category of 3D printable FRC, workability of 3D printable FRC during printing and their mechanical property in hardened state. In addition, the future opportunities and current challenges in 3D printable FRC technology were also discussed.

参考文献

[1]常西栋,李维红,王乾. 3D打印混凝土材料及性能测试研究进展[J].硅酸盐通报, 2019, 38(8):2435–2441.CHANG Xidong, LI Weihong, WANG Qian. Bull Chin Ceram Soc(in Chinese), 2019, 38(8):2435–2441.

[2]丁烈云,徐捷,覃亚伟.建筑3D打印数字建造技术研究应用综述[J].土木工程与管理学报, 2015, 32(3):1–10.DING Lieyun, XU Jie, QIN Yawei. J Civ Eng Manag(in Chinese),2015, 32(3):1–10.

[3] BUSWELL R A, LEAL D S W R, JONES S Z, et al. 3D printing using concrete extrusion:A roadmap for research[J]. Cem Concr Res, 2018,112:37–49.

[4]朱彬荣,潘金龙,周震鑫,等. 3D打印技术应用于大尺度建筑的研究进展[J].材料导报, 2018, 32(23):4150–4159.ZHU Binrong, PAN Jinlong, ZHOU Zhenxin, et al. Mater Rep(in Chinese), 2018, 32(23):4150–4159.

[5]张大旺,王栋民. 3D打印混凝土材料及混凝土建筑技术进展[J].硅酸盐学报, 2015, 34(6):1583–1588.ZHANG Dawang, WANG Dongmin. J Chin Ceram Soc(in Chinese),2015, 34(6):1583–1588.

[6] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing(3D printing):A review of materials, methods,applications and challenges[J]. Compos Part B:Eng, 2018, 143:172–196.

[7] MARCHMENT T, SANJAYAN J. Mesh reinforcing method for 3D Concrete Printing[J]. Autom Constr, 2020, 109:102992.

[8] LI Z J, WANG L, MA G W. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions[J]. Compos Part B:Eng, 2020,187:107796.

[9] MECHTCHERINE V, GRAFE J, NERELLA V N, et al. 3D-printed steel reinforcement for digital concrete construction–Manufacture,mechanical properties and bond behaviour[J]. Constr Build Mater,2018, 179:125–137.

[10]解燕春.纤维增强混凝土力学性能及耐久性研究进展[J].科技风,2021,(3):108–109+145.JIE Yanchun. Technol Wind(in Chinese), 2021,(3):108–109+145.

[11] HAMBACH M, MOELLER H, NEUMANN T, et al. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength(>100 MPa)[J]. Cem Concr Res, 2016, 89:80–86.

[12] PANDA B, PAUL S C, TAN M J. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material[J]. Mater Lett, 2017, 209:146–149.

[13] MA G W, LI Z J, WANG L, et al. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing[J]. Constr Build Mater, 2019, 202:770–783.

[14] DING T, XIAO J Z, ZOU S, et al. Anisotropic behavior in bending of3D printed concrete reinforced with fibers[J]. Compos Struct, 2020,254:112808.

[15] NEMATOLLAHI B, VIJAY P, SANJAYAN J, et al. Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction[J]. Materials, 2018, 11(12):2353.

[16] LI V C. Engineered Cementitious Composites(ECC)[M]. Springer,2019.

[17] DANIEL G, SOLTAN A, LI V C. A self-reinforced cementitious composite for building-scale 3D printing[J]. Cem Concr Comp, 2018,90:1–13.

[18] BAO Y, XU M, SOLTAN D, et al. Three-dimensional printing multifunctional engineered cementitious composites(ECC)for structural elements[C]//1st RILEM International Conference on Concrete and Digital Fabrication(Digital Concrete), Zurich,Switzerland, 2019, 19:115–128.

[19] YU J, LEUNG C K Y. Impact of 3D printing direction on mechanical performance of strain-hardening cementitious composite(SHCC)[C]//1st RILEM International Conference on Concrete and Digital Fabrication(Digital Concrete), Zurich, Switzerland, 2019, 19:255–265.

[20] FIGUERIREDO S C, RODRIGUEZ C R, AHMED Z Y, et al.Materials and design—An approach to develop printable strain hardening cementitious composites[J]. Mater Design, 2019, 165:107651.

[21] FIGUERIREDO S C, RODRIGUEZ C R, AHMED Z Y, et al.Mechanical behavior of printed strain hardening cementitious composites[J]. Materials, 2020, 13(10):2253.

[22] OGURA H, NERELLA V, MECHTCHERINE V. Developing and testing of strain-hardening cement-based composites(SHCC)in the context of 3D-printing[J]. Materials, 2018, 11(8):1375.

[23] ZHU B R, PAN J L, NEMATOLLAHI B, et al. Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction[J]. Mater Design, 2019, 181:108088.

[24] YE J H, CUI C, YU J T. Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber[J].Compos Part B:Eng, 2021, 211:108639.

[25] YE J H, CUI C, YU J T. Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete[J]. Constr Build Mater, 2021, 281:122586.

[26] ARUNOTHAYAN A R, NEMATOLLAHI B, RANADE R, et al.Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction[J]. Constr Build Mater, 2020, 257:119546.

[27] ARUNOTHAYAN A R, NEMATOLLAHI B, RANADE R, et al.Fiber orientation effects on ultra-high performance concrete formed by3D printing[J]. Cem Concr Res, 2020, 143:106384.

[28] PHAM L, TRAN J P, SANJAYAN J. Steel fibres reinforced 3D printed concrete:Influence of fibre sizes on mechanical performance[J].Constr Build Mater, 2020, 250:118785.

[29] WANGLER T P, ROUSSEL N, BOS F P, et al. Digital concrete:a review[J]. Cem Concr Res, 2019, 123:105780.

[30] HOU S D, DUAN Z H, XIAO J Z, et al. A review of 3D printed concrete:Performance requirements, testing measurements and mix design[J]. Constr Build Mater, 2021, 273:121745.

[31] YU K Q, MCGEE W, LI V C, et al. 3D-printable engineered cementitious composites(3DP-ECC):Fresh and hardened properties[J].Cem Concr Res, 2021, 143:106388.

[32] BOS F P, BOSCO E, SALET T. Ductility of 3D printed concrete reinforced with short straight steel fibers[J]. Virtual Phys Prototy, 2018,14(2):160–174.

[33] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cem Concr Comp, 2017, 79:62–70.

[34] WIJFFELS M, WOLFS R, SUIKER A, et al. Magnetic orientation of steel fibres in self-compacting concrete beams effect on failure behavior[J]. Cem Concr Comp, 2017, 80:342–355.

[35] SHAKOR P, NEJADI S, SUTJIPTO S, et al. Effects of deposition velocity in the presence/absence of E6-glass fibre on extrusion-based3D printed mortar[J]. Addit Manuf, 2020, 32:101069.

[36] CHEN M X, YANG L, ZHENG Y, et al. Rheological behaviors and structure build-up of 3D printed polypropylene and polyvinyl alcohol fiber reinforced calcium sulphoaluminate cement composites[J]. J Mater Res Technol, 2021, 10:1402–1414.

[37] LI V C, BOS F P, YU K Q, et al. On the emergence of 3D printable engineered, strain hardening cementitious composites(ECC/SHCC)[J].Cem Concr Res, 2020, 132:106038.

[38] SUN X Y, WANG Q, WANG H L, et al. Influence of multi-walled nanotubes on the fresh and hardened properties of a 3D printing PVA mortar ink[J]. Constr Build Mater, 2020, 247:118590.

[39] MOELICH G M, KRUGER J, COMBRINCK R. Plastic shrinkage cracking in 3D printed concrete[J]. Compos Part B:Eng, 2020, 200:108313.

[40] KRUGER J, CHO S, ZERANKA S, et al. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse[J]. Compos Part B:Eng, 2020, 183:107660.

[41]杜修力,金浏,李冬.混凝土与混凝土结构尺寸效应述评(Ι):材料层次[J].土木工程学报, 2017, 50(9):28–45.DU Xiuli, JIN Liu, LI Dong. Chin Civ Eng J(in Chinese), 2017, 50(9):28–45.

[42] YE J H, YU J T, CUI C, et al. Flexural size effect of ultra-high ductile concrete under different damage and ductility levels[J]. Cem Concr Comp, 2021, 115:103852.

[43] SANJAYAN J, NEMATOLLAHI B, XIA M, et al. Effect of surface moisture on inter-layer strength of 3D printed concrete[J]. Constr Build Mater, 2018, 172:468–475.

[44] ZAREIYANA B, KHOSHNEVIS B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete[J]. Autom Constr, 2017, 83:212–221.

[45] MARCHMENT T, SANJAYAN J. Bond properties of reinforcing bar penetrations in 3D concrete printing[J]. Autom Constr, 2020, 120:103394.

[46]刘致远,王振地,王玲,等. 3D打印水泥净浆层间拉伸强度及层间剪切强度[J].硅酸盐学报, 2019, 47(5):648–652.LIU Zhiyuan, WANG Zhendi, WANG Ling, et al. J Chin Ceram Soc,2019, 47(5):648–652.

[47] Le T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cem Concr Res, 2012, 42(3):558–566.

[48] PLESSIS A D, BABAFEMI A J, PAUL S C, et al. Biomimicry for 3D concrete printing:A review and perspective[J]. Addit Manuf, 2021, 38:101823.

[49] SOLTAN D G, LI V C. Nacre-inspired composite design approaches for large-scale[J]. Cem Concr Comp, 2018, 88:172–186.

[50] YE J H, YU K Q, YU J T, et al. Designing ductile, tough,nacre-inspired concrete member in metric scale[J]. Cem Concr Comp,2021, 118:103987.

[51] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nat Mater, 2015, 14:23–36.

[52] CARNEAU P, MESNIL R, ROUSSEL N, et al. Additive manufacturing of cantilever-From masonry to concrete 3D printing[J].Autom Constr, 2020, 116:103184.

[53] COSTANZI C B, AHMED Z Y, SCHIPPER H R, et al. 3D printing concrete on temporary surfaces:The design and fabrication of a concrete shell structure[J]. Autom Constr, 2018, 94:395–404.

[54] LIM S, BUSWELL R A, VALENTINE P J, et al. Modelling curved-layered printing paths for fabricating large-scale construction components[J]. Addit Manuf, 2016, 12:216–230.

[55] WANG L, JIANG H L, LI Z J, et al. Mechanical behaviors of 3D printed lightweight concrete structure with hollow section[J]. Arch Civ Mech Eng, 2020, 20:16.

[56] AMIR O, SHAKOUR E. Simultaneous shape and topology optimization of prestressed concrete beams[J]. Struct Multidiscip Optim, 2018, 57:1831–1843.

[57] ASPRONE D, AURICCHIO F, MENNA C, et al. 3D printing of reinforced concrete elements:Technology and design approach[J].Constr Build Mater, 2018, 165:218–231.

[58] VANTYGHEM G, CORTE W D, SHAKOUR E, et al. 3D printing of a post-tensioned concrete girder designed by topology optimization[J].Autom Constr, 2020, 112:103084.

基本信息:

DOI:10.14062/j.issn.0454-5648.20210213

中图分类号:TU528.572

引用信息:

[1]叶俊宏,郑怡,余江滔等.3D打印纤维增强混凝土材料研究进展[J].硅酸盐学报,2021,49(11):2538-2548.DOI:10.14062/j.issn.0454-5648.20210213.

基金信息:

国家自然科学基金面上项目(51778461,21978504); 上海市科学技术委员会科研计划项目(19DZ1202500)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文