769 | 1 | 17 |
下载次数 | 被引频次 | 阅读次数 |
大尺寸二维二氧化钛纳米片在电子器件中有重要的作用,但是目前的合成仍面临挑战。本工作提出了以碳酸铯(Cs2CO3)和锐钛矿二氧化钛(TiO2)为原料,高温固相合成层状钛酸盐,并研究钛酸盐合成的实验条件。研究固相反应产物钛酸铯(Cs0.7Ti1.825O4)的结晶性随原料的混料方式、摩尔比、投料量、煅烧时间等的变化关系。结果表明:采用固态混料方式煅烧获得的产物仅有单一物相Cs0.7Ti1.825O4,而采用溶液混料的方式得到的产物含有金红石二氧化钛和钛酸铯的两相混合物。在反应温度为800℃、反应原料摩尔比为n(Cs)/n(Ti)=1/(2.6~4.0)时,均可得到产物Cs0.7Ti1.825O4。并且产物钛酸铯结晶性随着反应物的投料量和煅烧时间的增加而提高。用盐酸处理获得的体相钛酸铯(Cs0.7Ti1.825O4),获得质子化的产物(H0.7Ti1.825O4)。四丁基氢氧化铵(TBAOH)对质子化产物进行剥离,并获得二氧化钛少层纳米片(Ti0.91O2)。研究发现,当大分子与钛酸盐中可交换质子的摩尔比为0.5 [n(TBAOH)/n(H+)=0.5]时,可诱导有序的片层结构(Ti0.91O2)生成。该层状结构煅烧处理后用作光催化剂进行水分解制氢的研究。光催化实验在模拟太阳光下进行,并用乙醇做牺牲剂。研究发现Ti0.91O2的催化活性与剥离条件下TBAOH/H+的摩尔比相关,当n(TBAOH)/n(H+)=0.5时,获得的纳米片显示出最优的产氢活性。
Abstract:Two-dimensional TiO2 nanosheets at large size are of importance in the electronic devices, but the synthesis is challenging.A few-layered titanate was prepared via high-temperature solid-state reaction with Cs2CO3 and anatase TiO2 as precursors. The results show that the crystallinity of cesium titanate(Cs0.7Ti1.825O4) as a solid reaction product is related to the several pretreatment parameters, i.e., mixing method for precursors, molar ratio of Cs/Ti, feeding amount, and calcination duration. A single phase of Cs0.7Ti1.825O4 can be obtained by calcinating the precursor mixture. However, a mixed phase of rutile TiO2 and Cs0.7Ti1.825O4 is obtained when the precursors are mixed in solution. A product Cs0.7Ti1.825O4 can be obtained at 800 ℃ in a molar ratio range of n(Cs)/n(Ti) of 1/(2.6–4.0). The crystallinity of cesium titanate improves with the increase of feeding amount of total precursors or calcination duration. After calcination, cesium titanate is treated using hydrochloric acid and the protonated product of H0.7Ti1.825O4 is obtained. Also, few-layered titania nanosheets(Ti0.91O2) are obtained via exfoliation of the protonated product with amine-based macromolecules(TBAOH). The well-ordered lamellar structure of Ti0.91O2 is formed when the molar ratio between TBAOH ions to the exchangeable protons in the titanate is 0.5(n(TBAOH)/n(H+)=0.5). Such a layered structure is annealed and used as a photocatalyst for hydrogen evolution in water under simulated solar light with ethanol as a sacrificial agent. The photocatalytic activity of the final product is related to the ratio of TBAOH/H+ during exfoliation, and it is indicated that the product obtained at TBAOH/H+ of 0.5 exhibits the optimum hydrogen evolution activity.
[1] ZHUANG G, YAN J, WEN Y, et al. Two-dimensional transition metal oxides and chalcogenides for advanced photocatalysis:Progress,challenges, and opportunities[J]. Sol RRL, 2020, 5(6):2000403.
[2] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2d transition metal carbides and nitrides(MXenes)[J].Adv Mater, 2018, 30(52):1804779.
[3] LIU Y, DUAN X, SHIN H-J, et al. Promises and prospects of two-dimensional transistors[J]. Nature, 2021, 591(7848):43–53.
[4] MURALI A, LOKHANDE G, DEO K A, et al. Emerging 2D nanomaterials for biomedical applications[J]. Mater Today, 2021, 50:276–302.
[5]朱宏伟,王敏.二维材料:结构、制备与性能[J].硅酸盐学报, 2017,45(8):1043–1053.ZHU Hongwei, WANG Min. J Chin Ceram Soc, 2017, 45(8):1043–1053.
[6] SU J, LI G D, LI X H, et al. 2D/2D heterojunctions for catalysis[J].Adv Sci, 2019, 6(7):1801702.
[7] ZHANG X, YUAN X, JIANG L, et al. Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis:Recent advances[J].Chem Eng J, 2020, 390:124475.
[8] CHIMENE D, ALGE D L, GAHARWAR A K. Two-dimensional nanomaterials for biomedical applications:emerging trends and future prospects[J]. Adv Mater, 2015, 27(45):7261–7284.
[9] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides(MXenes)[J]. Science, 2021,372(6547):eabf1581.
[10] GU W, LU F, WANG C, et al. Face-to-face interfacial assembly of ultrathin g-c3n4 and anatase tio2 nanosheets for enhanced solar photocatalytic activity[J]. ACS Appl Mater Interfaces, 2017, 9(34):28674–28684.
[11] SWAIN G, SULTANA S, PARIDA K. A review on vertical and lateral heterostructures of semiconducting 2D-MoS2 with other 2D materials:a feasible perspective for energy conversion[J]. Nanoscale, 2021, 13:9908–9944.
[12]银敏.层状KxH2–xTi4O9的制备及其光谱性质研究[J].广东化工,2014, 41(10):219–220.YIN Min. Guangdong Chem Ind(in Chinese). 2014, 41(10):219–220.
[13]刘勇辉.胺/层状钛酸盐复合材料对CO2的吸附性能研究[J].成都信息工程大学学报, 2019, 34(6):671–675.LIU Yonghui. J Chengdu Univ Inform Technol(in Chinese), 2019,34(6):671–675.
[14]傅旺.钛酸盐材料的制备和表征[D].大连:大连理工大学, 2014.FU Wang. Preparation and characterization of titanate materials(in Chinese, dissertation). Dalian:Dalian University of Technology, 2014.
[15] FEIST T P, DAVIES P K. The soft chemical synthesis of TiO2(B)from layered titanates[J]. J Solid State Chem, 1992, 101(2):275–295.
[16] HOU L-J, LIU R-C, YUAN H-Y, et al. Micro-structured lepidocrocite-type H1.07Ti1.73O4 as anode for lithium-ion batteries with an ultrahigh rate and long-term cycling performance[J]. Rare Metals,2021, 40(6):1391–1401.
[17] WANG L, SASAKI T. Titanium oxide nanosheets:Graphene analogues with versatile functionalities[J]. Chem Rev, 2014, 114(19):9455–9486.
[18] NURDIWIJAYANTO L, WU J, SAKAI N, et al. Monolayer attachment of metallic mos2 on restacked titania nanosheets for efficient photocatalytic hydrogen generation[J]. ACS Appl Energy Mater, 2018, 1(12):6912–6918.
[19]王靖宇. A2Ti6O13(A=Na, K)钛酸盐的合成、表面改性以及电化学性能[D].山东;山东大学, 2021.WANG Jingyu. Synthesis, surface modification and electrochemical performance of A2Ti6O13(A=Na, K)Titanate(in Chinese, dissertation).Shandong:Shandong University, 2021.
[20]高仁波,赵云良,陈立才,等.蒙脱石层电荷密度对其二维纳米片剥离的影响[J].硅酸盐学报, 2021, 49(7):1420–1428.GAO Renbo, ZHAO Yunliang, CHEN Licai, et al. J Chin Ceram Soc,2021, 49(7):1420–1428.
[21] XIONG P, SUN B, SAKAI N, et al. 2D Superlattices for efficient energy storage and conversion[J]. Adv Mater, 2020, 32(18):1902654.
[22] AMENT K, WAGNER D R, GOTSCH T, et al. Enhancing the catalytic activity of palladium nanoparticles via sandwich-like confinement by thin titanate nanosheets[J]. ACS Catal, 2021, 11(5):2754–2762.
[23] SAKAI N, SASAKI T, MATSUBARA K, et al. Layer-by-layer assembly of gold nanoparticles with titania nanosheets:Control of plasmon resonance and photovoltaic properties[J]. J Mater Chem, 2010,20(21):4371–4378.
[24] GREY I E, LI C, MADSEN I C, et al. The stability and structure of Csx[Ti2-x/4□x/4]O4, 0.61<0.65[J]. J Solid State Chem 1987, 66(1):7–19.
[25] HARADA M, SASAKI T, EBINA Y, et al. Preparation and characterizations of Fe-or Ni-substituted titania nanosheets as photocatalysts[J]. J Photochem Photobiol, A, 2002, 148(1):273–276.
[26] KONG X, WANG X, MA D, et al. Hydrothermal synthesis and electrochemical performance of K0.8Fe0.8Ti1.2O4 as lithium ion battery anode[J]. Mater Lett, 2019, 237:145–148.
[27] TAKAYOSHI SASAKI, MAMORU WATANABE, YUICHI MICHIUE, et al. Preparation and acid-base properties of a protonated titanate with the lepidocrocite-like layer structure[J]. Chem Mater,1995, 7:1001–1007.
[28] SASAKI T, KOMATSU Y, FUJIKI Y. A new layered hydrous titanium dioxide HxTi2–x/4O4·H2O[J]. J Chem Soc Chem Commun, 1991,(12):817–818.
[29] MILEN GATESHKI S-J H, DAE HOON PARK, YANG REN, AND,PETKOV V. Structure of exfoliated titanate nanosheets determined by atomic pair distribution function analysis[J]. Chem Mater, 2004, 16:5153–5157.
[30] TAKAYOSHI SASAKI, MAMORU WATANABE, HIDEO HASHIZUME, et al. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it[J]. J Am Chem Soc,1996, 118:8329–8335.
[31] MALUANGNONT T, WUTTITHAM B, HONGKLAI P, et al. An unusually acidic and thermally stable cesium titanate CsxTi2–yM yO4(x=0.67 or 0.70; M=vacancy or Zn)[J]. Inorg Chem, 2019, 58(10):6885–6892.
[32] WAN J, CHEN W, JIA C, et al. Defect effects on TiO2 nanosheets:stabilizing single atomic site au and promoting catalytic properties[J].Adv Mater, 2018, 30(11):1705369.
[33] YOU W, XIANG K. Controllable synthesis of ultrathin monolayer titanate nanosheet via osmotic swelling to exfoliation of layered titanate[J]. Ceram Int, 2021, 47(13):19169–19179.
[34] LI D, CHENG X, YU X, et al. Preparation and characterization of TiO2-based nanosheets for photocatalytic degradation of acetylsalicylic acid:Influence of calcination temperature[J]. Chem Eng J, 2015, 279:994–1003.
[35]胡满成,刘志宏. 30℃时碳酸铯-乙醇-水三元体系的平衡溶解度[J].高等学校化学学报, 2000, 19(11):1717–1718.HU Mancheng, LIU Zhihong. Chem J Chin Univ(in Chinese), 2000,19(11):1717–1718.
[36] OHASHI M. Ion exchange of layer structured titanate CsxTi2-x/4O4(x=0.68)and ionic conductivity of the products[J]. Mol Cryst Liq Cryst2006, 341(2):265–270.
[37] SASAKI T, YU K, FUJIKI Y. Protonated pentatitanate:Preparation,characterizations, and cation intercalation[J]. Chem Mater, 1992, 4(4):894–899.
[38] GATESHKI M, HWANG S-J, PARK D H, et al. Structure of exfoliated titanate nanosheets determined by atomic pair distribution function analysis[J]. Chem Mater, 2004, 16(24):5153–5157.
[39] SASAKI T, NAKANO S, YAMAUCHI S, et al. Fabrication of titanium dioxide thin flakes and their porous aggregate[J]. Chem Mater, 1997,9(2):602–608.
[40]郑会奇,陈晋,赵杨,等.溶剂热法原位制备TiO2/Ti3C2Tx复合材料及其光催化性能[J].硅酸盐学报, 2020, 48(5):723–729.ZHENG Huiqi, CHEN Jin, ZHAO Yang, et al. J Chin Ceram Soc, 2020,48(5):723–729.
[41]姜建辉,邓臣强,曹钰,等. Y和Si共掺杂纳米TiO2的制备及光催化性能[J].硅酸盐学报, 2019, 47(7):942–950.JIANG Jianhui, DENG Chenqiang, CAO Yu, et al. J Chin Ceram Soc,2019, 48(5):723–729.
[42] ZHOU X. Ti O2-supported single-atom catalysts for photocatalytic reactions[J]. Acta Phys-Chim Sin, 2021, 37(6):2008064.
基本信息:
DOI:10.14062/j.issn.0454-5648.20220509
中图分类号:O643.36;O644.1;TQ116.2
引用信息:
[1]周雪梅,杨磊,韩晓驰.二氧化钛纳米片的合成及其光催化活性[J].硅酸盐学报,2023,51(01):32-39.DOI:10.14062/j.issn.0454-5648.20220509.
基金信息:
国家自然科学基金青年项目(22108179)