1,292 | 14 | 12 |
下载次数 | 被引频次 | 阅读次数 |
阐述了分子动力学模拟的基本原理,解释了相关概念,如边界条件、算法、势函数以及系综,总结了分子动力学模拟统计玻璃微观结构特征和计算玻璃各种宏观性能的理论方法,综述了该领域近来取得的研究进展,包括建立氟氧玻璃不混溶结构模型、设计含有目标晶相的玻璃陶瓷、模拟分相预测组成依赖的析晶相演变、模拟分相预测析晶相晶型转变、优化玻璃陶瓷发光性能以及提高铝硅酸盐机械强度等6个方面。最后,展望了3个有意义的后续研究方向,即探究模拟体系参数提高结果精确性、借助第一性原理分子动力学开发势函数和结合其他方法拓展模拟的实用性。
Abstract:This review represented some topics for molecular dynamics(MD) simulation, i.e., the initial conditions, algorithms,empirical potentials, and thermodynamic ensembles, and their application in simulation of glass materials. The methodologies of structural analysis and property calculation of glass materials were summarized. Recent development on the MD simulations of glasses, such as the structure model of oxyfluoride glass, the design of glass ceramics with target crystal phase, the prediction of compositional-dependent crystallization phase evolution and crystalline phase transformation via simulation of phase separation,optimization of the luminescent performance of glass ceramics, and improvement of the mechanical strength of aluminosilicates glass were represented. In addition, three future research directions were also prospected, i.e., the parameters of the simulation system to improve the accuracy of the results, the potential function with the help of first-principles molecular dynamics, and the practicability of the simulation with combining other methods.
[1]胡春平,潘伟,陈健.分子动力学在玻璃科学中的应用[C]//第十一届全国高新技术陶瓷学术年会论文集,杭州, 2000:373–375.HU Chunping, PAN Wei, CHEN Jian. Application of molecular dynamics in glass science[C]//Proceedings of the 11th National Annual Conference on high tech ceramics, Hangzhou, 2000:373–375.
[2] CORNING INCORPORATED. Gorilla Glass Victus[EB/OL].[2020–03–26]. https://www.corning.com/microsites/csm/gorillaglass/PI_Sheets/2020/Corning%20Gorilla%20Glass%20Victus_PI%20Sheet.pdf.
[3] MAURO J C, TANDIA A, VARGHEESE K D, et al. Accelerating the design of functional glasses through modeling[J]. Chem Mater, 2016,28(12):4267–4277.
[4] WOODCOCK L V, ANGELL C A, CHEESEMAN P. Molecular dynamics studies of the vitreous state:Simple ionic systems and silica[J]. J Chem Phys, 1976, 65(4):1565–1577.
[5] PEDONE A. Properties Calculations of silica-based glasses by atomistic simulations techniques:A review[J]. J Phys Chem C, 2009,113(49):20773–20784.
[6] DU J. Molecular Dynamics Simulations of Oxide Glasses[M]//MUSGRAVES J D, HU J and CALVEZ L. Springer Handbook of Glass. Cham:Springer International Publishing. 2019:1131–1155.
[7] DU J. Challenges in Molecular dynamics simulations of multicomponent oxide glasses[M]//MASSOBRIO C, DU J,BERNASCONI M, SALMON P S. Molecular dynamics simulations of disordered materials:From network glasses to phase-change memory alloys. Cham:Springer International Publishing. 2015:157–180.
[8] NAGAOKA M, SUZUKI Y, OKAMOTO T, et al. A hybrid MC/MD reaction method with rare event-driving mechanism:Atomistic realization of 2-chlorobutane racemization process in DMF solution[J].Chem Phys Lett, 2013, 583:80–86.
[9] SCHILLING T, DOROSZ S, SCHOPE H J, et al. Crystallization in suspensions of hard spheres:a Monte Carlo and molecular dynamics simulation study[J]. J Phys Condens Matter, 2011, 23(19):194120.
[10] XIANG Y, DU J, SMEDSKJAER M M, et al. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations[J]. J Chem Phys, 2013, 139(4):044507.
[11] WAGNER J, HAIGIS V, LEYDIER M, et al. The structure of Y-and La-bearing aluminosilicate glasses and melts:A combined molecular dynamics and diffraction study[J]. Chem Geol, 2017, 461:23–33.
[12] LEE K H, YANG Y, ZIEBARTH B, et al. Evaluation of classical interatomic potentials for molecular dynamics simulations of borosilicate glasses[J]. J Non-Cryst Solids, 2020, 528:119736.
[13] CORNO M, PEDONE A. Vibrational features of phospho-silicate glasses:Periodic B3LYP simulations[J]. Chem Phys Lett, 2009,476(4–6):218–222.
[14] MOUNTJOY G, AL-HASNI B M, STOREY C. Structural organisation in oxide glasses from molecular dynamics modelling[J]. J Non-Cryst Solids, 2011, 357(14):2522–2529.
[15] PEDONE A, CHEN X, HILL R G, et al. Molecular dynamics investigation of halide-containing phospho-silicate bioactive glasses[J].J Phys Chem B, 2018, 122(11):2940–2948.
[16] BEEMAN D. Some multistep methods for use in molecular dynamics calculations[J]. J Comput Phys, 1976, 20(2):130–139.
[17] GEAR C W. Numerical initial value problems in ordinary differential equations[M]. New York:Prentice-Hall Series in Automatic Computation, 1971.
[18] JONES J E. On the determination of molecular fields-II from the equation of state of a gas[J]. Proc R Soc London Ser A, 1924, 106(738):463–477.
[19] BUCKINGHAM R A. The classical equation of state of gaseous helium, neon and argon[J]. Proc R Soc London Ser A, 1938, 168(933):264–283.
[20] BUSING W R. Interpretation of the crystal structure of Li2Be F4 in terms of the Born-Mayer-Huggins model[J]. J Chem Phys, 1972,57(7):3008–3010.
[21] PEDONE A, MALAVASI G, MENZIANI M C, et al. A new self-consistent empirical interatomic potential model for oxides,silicates, and silica-based glasses[J]. J Phys Chem B, 2006, 110(24):11780–11795.
[22] JOHNSON R, WILSON W. Defect calculations for FCC and BCC metals[M]. PIERRE C G, JOE R B, JAFFEE R I. Interatomic Potentials and Simulation of Lattice Defects. US:Springer, 1972:301–319.
[23] TERSOFF J. MODELING SOLID-STATE CHEMISTRYINTERATOMIC POTENTIALS FOR MULTICOMPONENT SYSTEMS[J]. Phys Rev B, 1989, 39(8):5566–5568.
[24] BASKES M I. Modified embedded-atom potentials for cubic materials and impurities[J]. Phys Rev B, 1992, 46(5):2727–2742.
[25]文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展, 2003, 33(1):65–73.WEN Yuhua, ZHU Ruzeng, ZHOU Fuxin, et al. Adv Mech(in Chinese), 2003, 33(1):65–73.
[26]赵素,李金富,周尧和.分子动力学模拟及其在材料科学中的应用[J].材料导报, 2007, 21(4):5–8.ZHAO Su, LI Jinfu, ZHOU Yaohe. Mater Rep(in Chinese), 2007,21(4):5–8.
[27] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. J Chem Phys, 1980, 72(4):2384–2393.
[28] SWOPE W C, ANDERSEN H C, BERENS P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters[J]. J Chem Phys, 1982, 76(1):637–649.
[29] HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. J Phys Chem,1987, 91(19):4950–4963.
[30]王云江,魏丹,韩懂,等.非晶态固体的结构可以决定性能吗?[J].力学学报, 2020, 52(02):303–317.WANG Y, WEI D, HAN D, et al. Chin. J. Mech(in Chinese), 2020,52(02):303–317.
[31] ZHAO J, MA R, CHEN X, et al. From phase separation to nanocrystallization in fluorosilicate glasses:structural design of highly luminescent glass-ceramics[J]. J Phys Chem C, 2016, 120(31):17726–17732.
[32] DENG L, DU J. Development of boron oxide potentials for computer simulations of multicomponent oxide glasses[J]. J Am Ceram Soc,2019, 102(5):2482–2505.
[33] DU J, CORMACK A N. The medium range structure of sodium silicate glasses:a molecular dynamics simulation[J]. J Non-Cryst Solids, 2004, 349:66–79.
[34] YUAN X, CORMACK A N. Efficient algorithm for primitive ring statistics in topological networks[J]. Comput Mater Sci, 2002, 24(3):343–360.
[35] ZHAO Y, DU J, QIAO X, et al. Ionic self-diffusion of Na2O-Al2O3-SiO2 glasses from molecular dynamics simulations[J]. J Non-Cryst Solids, 2020, 527:119734.
[36] KARPUKHINA N, HILL R G, LAW R V. Crystallisation in oxide glasses–a tutorial review[J]. Chem Soc Rev, 2014, 43(7):2174–2186.
[37] PHILLIPS J. Topology of covalent non-crystalline solids III:kinetic model of the glass transition[J]. J Non-Cryst Solids, 1981, 44(1):17–30.
[38] VOLLMAYR K, KOB W, BINDER K. Cooling-rate effects in amorphous silica:A computer-simulation study[J]. Phys Rev B, 1996,54(22):15808–15827.
[39] DENG L, DU J. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations[J]. J Chem Phys, 2018, 148(2):024504.
[40] LUSVARDI G, MALAVASI G, TARSITANO F, et al. Quantitative structure-property relationships of potentially bioactive fluoro phospho-silicate glasses[J]. J Phys Chem B, 2009, 113(30):10331–10338.
[41] HUDON P, BAKER D R. The nature of phase separation in binary oxide melts and glasses. I. Silicate systems[J]. J Non-Cryst Solids,2002, 303(3):299–345.
[42] HUDON P, BAKER D R. The nature of phase separation in binary oxide melts and glasses. II. Selective solution mechanism[J]. J Non-Cryst Solids, 2002, 303(3):346–353.
[43] HE M, JIA J, ZHAO J, et al. Glass-ceramic phosphors for solid state lighting:A review[J]. Ceram Int, 2021, 47(3):2963–2980.
[44] HUANG C, CORMACK A N. Structural differences and phase separation in alkali silicate glasses[J]. J Chem Phys, 1991, 95(5):3634–3642.
[45] LUSVARDI G, MALAVASI G, CORTADA M, et al. Elucidation of the structural Role of fluorine in potentially bioactive glasses by experimental and computational investigation[J]. J Phys Chem B, 2008,112(40):12730–12739.
[46]王健健,刘立强,胡文广,等.分子动力学探究Fe3+对Ca O-Al2O3-SiO2系微晶玻璃微观结构的影响[J].中国陶瓷, 2017,53(4):30–33.WANG Jianjian, LIU Liqiang, HU Wenguang, et al. China Ceram(in Chinese), 2017, 53(4):30–33.
[47] NIU H, PIAGGI P M, INVERNIZZI M, et al. Molecular dynamics simulations of liquid silica crystallization[J]. Proc Natl Acad Sci USA,2018, 115(21):5348–5352.
[48] LIU R S, LIANG Y C, LIU H R, et al. Simulation study on non-linear effects of initial melt temperatures on microstructures during solidification process of liquid Mg7Zn3 alloy[J]. T Nonferr Metal Soc,2013, 23(4):1052–1060.
[49] FARUQ M, VILLESUZANNE A, SHAO G. Molecular-dynamics simulations of binary Pd-Si metal alloys:Glass formation,crystallisation and cluster properties[J]. J Non-Cryst Solids, 2018, 487:72-86.
[50] LI P-T, YANG Y-Q, XIA Z, et al. Molecular dynamic simulation of nanocrystal formation and tensile deformation of TiAl alloy[J]. RSC Adv, 2017, 7(76):48315–48323.
[51] ZANOTTO E D, TSUCHIDA J E, SCHNEIDER J F, et al. Thirty-year quest for structure–nucleation relationships in oxide glasses[J]. Int Mater Rev, 2015, 60(7):376–391.
[52] MCKENZIE M E, MAURO J C. Hybrid Monte Carlo technique for modeling of crystal nucleation and application to lithium disilicate glass-ceramics[J]. Comput Mater Sci, 2018, 149:202–207.
[53] MCKENZIE M E, GOYAL S, LOEFFLER T, et al. Implicit glass model for simulation of crystal nucleation for glass-ceramics[J]. NPJ Comput Mater, 2018, 4(1):1–7.
[54] LODESANI F, MENZIANI M C, MAEDA K, et al. Disclosing crystal nucleation mechanism in lithium disilicate glass through molecular dynamics simulations and free-energy calculations[J]. Sci Rep, 2020,10(1):17867.
[55] MARCH N H, STREET R A, TOSI M P. Amorphous solids and the liquid state[M]. New York, Springer Science&Business Media, 2013.
[56] LANE J M D. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dynamics[J]. Phys Rev E, 2015,92(1):012320.
[57] LU X, DU J. Quantitative structure-property relationship(QSPR)analysis of calcium aluminosilicate glasses based on molecular dynamics simulations[J]. J Non-Cryst Solids, 2020, 530:119772.
[58] KUMAZAWA M. The elastic constant of polycrystalline rocks and nonelastic behavior inherent to them[J]. J Geophys Res, 1969, 74(22):5311–5320.
[59] ZHENG W, XU S, HU S. The Pressure Dependence of Elastic Stiffness of Granular Materials:A Binary Model in Effective Medium Theory[C]. International conference on heterogeneous material mechanics. Shanghai, 2011:63–66.
[60] KIEU L H, DELAYE J M, CORMIER L, et al. Development of empirical potentials for sodium borosilicate glass systems[J]. J Non-Cryst Solids, 2011, 357(18):3313–3321.
[61]赵谦,祖群,齐亮,等.分子动力学模拟预测氧化钠含量对二元钠硅酸盐玻璃弹性模量的影响[J].硅酸盐学报, 2018, 46(11):1558–1567.ZHAO Qian, ZU Qun, QI Liang, et al. J Chin Ceram Soc, 2018, 46(11):1558–1567.
[62] ZHAO J, XU X, CHEN X, et al. A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations[J]. J Eur Ceram Soc, 2019, 39(15):5018–5029.
[63] GREAVES G N, FONTAINE A, LAGARDE P, et al. Local structure of silicate glasses[J]. Nature, 1981, 293(5834):611–616.
[64] POULAIN M. Glass formation in ionic systems[J]. Nature, 1981,293(5830):279–280.
[65] MALLIK A, BARIK A K, PAL B. Retracted article:self-limited growth of Pr3+-doped La F3 nanocrystals in oxyfluoride glass and glass-ceramics[J]. RSC Adv, 2017, 7(24):14824–14831.
[66] ZHAO J, XU X, REN K, et al. Structural origins of Ba F2/Ba1–x Rx F2+x/RF3 nanocrystals formation from phase separated fluoroaluminosilicate glass:a molecular dynamic simulation study[J].Adv Theory Simul, 2019, 2(10):1900062.
[67] XU X, ZHANG W, YANG D, et al. Phonon-assisted population inversion in lanthanide-doped upconversion Ba2La F7 nanocrystals in glass-ceramics[J]. Adv Mater, 2016, 28(36):8045–8050.
[68] ZHAO J, XU X, LI P, et al. Structural origins of RF3/NaRF4nanocrystal precipitation from phase-separated SiO2-Al2O3-RF3-Na F glasses:a molecular dynamics simulation study[J]. J Phys Chem B,2019, 123(13):3024–3032.
[69] LI X, CHEN D, HUANG F, et al. Phase-Selective Nanocrystallization of Na LnF4 in Aluminosilicate Glass for Random Laser and 940 nm LED-Excitable Upconverted Luminescence[J]. Laser Photonics Rev,2018, 12(7):1800030.
[70] PENG Y, ZHONG J, LI X, et al. Controllable competitive nanocrystallization of La3+-based fluorides in aluminosilicate glasses and optical spectroscopy[J]. J Eur Ceram Soc, 2019, 39(4):1420–1427.
[71] CHEN J, WANG S, LI S, et al. Yttrium-dopants-induced phase-controllable and luminescence-tunable lanthanide-dopedα/β-NaYbF4 nanocrystals in glass for laser-driven upconverted lighting[J]. J Eur Ceram Soc, 2019, 39(16):5364–5372.
[72] WANG S, LIN J, LI X, et al. Glass-limited Yb/Er:NaLuF4 nanocrystals:reversible hexagonal-to-cubic phase transition and anti-counterfeiting[J]. J Mater Chem C, 2020, 8(45):16151–16159.
[73] KANG S, HUANG Z, LIN W, et al. Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores[J].J Mater Chem C, 2019, 7(17):5155–5162.
[74] XU X, ZHAO J, CHEN X, et al. Ca2+/Sr2+/Ba2+dependent phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass[J]. J Am Ceram Soc, 2020, 103(10):5796–5807.
[75] ALI M A, REN J, LIU X, et al. Understanding Enhanced Upconversion Luminescence in Oxyfluoride Glass-Ceramics Based on Local Structure Characterizations and Molecular Dynamics Simulations[J]. J Phys Chem C, 2017, 121(28):15384–15391.
[76] CAVILLON M, FAUGAS B, ZHAO J, et al. Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres[J]. J Chem Thermodyn, 2019, 128:119–126.
[77] TANDIA A, VARGHEESE K D, MAURO J C. Elasticity of ion stuffing in chemically strengthened glass[J]. J Non-Cryst Solids, 2012,358(12–13):1569–1574.
[78] VARGHEESE K D, TANDIA A, MAURO J C. Molecular dynamics simulations of ion-exchanged glass[J]. J Non-Cryst Solids, 2014, 403:107–112.
[79] REN M, CHENG J Y, JACCANI S P, et al. Compositionstructure-property relationships in alkali aluminosilicate glasses:A combined experimental-computational approach towards designing functional glasses[J]. J Non-Cryst Solids, 2019, 505:144–153.
[80] LE V V, DINH H T. Structural and mechanical properties of densified(Li2O)0.2(SiO2)0.8 glasses:A molecular dynamics simulations study[J].J Non-Cryst Solids, 2020, 530:119815.
[81] ZHANG Z, ISPAS S, KOB W. The critical role of the interaction potential and simulation protocol for the structural and mechanical properties of sodosilicate glasses[J]. J Non-Cryst Solids, 2020, 532:119895.
[82] ZHAO Y, DU J, CAO X, et al. A modified random network model for P2O5-Na2O-Al2O3-SiO2 glass studied by molecular dynamics simulations[J]. RSC Adv, 2021, 11(12):7025–7036.
[83] ZENG H, WANG L, YE F, et al. Mechanical-structural investigation of chemical strengthening aluminosilicate glass through introducing phosphorus pentoxide[J]. Front Mater, 2016, 3:53.
[84] DU J, XIANG Y. Effect of strontium substitution on the structure,ionic diffusion and dynamic properties of 45S5 Bioactive glasses[J]. J Non-Cryst Solids, 2012, 358(8):1059–1071.
[85] SUNDARARAMAN S, HUANG L, ISPAS S, et al. New optimization scheme to obtain interaction potentials for oxide glasses[J]. J Chem Phys, 2018, 148(19):194504.
[86] SUNDARARAMAN S, HUANG L P, ISPAS S, et al. New interaction potentials for alkali and alkaline-earth aluminosilicate glasses[J]. J Chem Phys, 2019, 150(15):13.
[87] CARRéA, ISPAS S, HORBACH J, et al. Developing empirical potentials from ab initio simulations:The case of amorphous silica[J].Comput Mater Sci, 2016, 124:323–334.
[88] COLLIN M, FOURNIER M, FRUGIER P, et al. Structure of International Simple Glass and properties of passivating layer formed in circumneutral pH conditions[J]. NPJ Mater Degrad, 2018, 2(1):1–12.
[89] LU X, REN M, DENG L, et al. Structural features of ISG borosilicate nuclear waste glasses revealed from high-energy X-ray diffraction and molecular dynamics simulations[J]. J Nucl Mater, 2019, 515:284–293.
[90] LU X, DENG L, HUNTLEY C, et al. Mixed Network Former Effect on Structure, Physical Properties, and Bioactivity of 45S5 Bioactive Glasses:An Integrated Experimental and Molecular Dynamics Simulation Study[J]. J Phys Chem B, 2018, 122(9):2564–2577.
[91] REN M, LU X, DENG L, et al. B2O3/SiO2 substitution effect on structure and properties of Na2O-Ca O-SrO-P2O5-SiO2 bioactive glasses from molecular dynamics simulations[J]. Phys Chem Chem Phys, 2018, 20(20):14090–14104.
[92]王泽斌.计算机辅助玻璃配方优化设计[J].硅酸盐通报, 2003(4):81–85.WANG Zebing. Bull Chin Ceramic Soc(in Chinese), 2003(4):81–85.
[93]刘世民.新型玻璃薄膜材料设计、制备技术进展[J].燕山大学学报,2012, 36(6):471–481.LIU Shimin. J Yanshan Univ(in Chinese), 2012, 36(6):471–481.
基本信息:
DOI:10.14062/j.issn.0454-5648.20210199
中图分类号:TQ171.1
引用信息:
[1]戴晓茹,赵君婕,俆秀瑕等.利用分子动力学模拟玻璃结构与计算玻璃性能研究进展[J].硅酸盐学报,2021,49(12):2691-2709.DOI:10.14062/j.issn.0454-5648.20210199.
基金信息:
国家自然科学基金(51672243;51872255)资助