nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2024 11 v.52 3524-3536
冻融与盐蚀耦合作用下混凝土的细观特征与损伤演化规律
基金项目(Foundation): 国家自然科学基金(52268047); 陕西省自然科学基础研究计划(2024JC-YBQN-0610); 陕西省博士后科研项目(2023BSH EDZZ310); 陕西省“四主体一联合”地下结构抗震校企联合研究中心开放基金(KY2024-YB01); 榆林市科技计划项目(CXY-2022-157)
邮箱(Email): csj@xust.edu.cn;liyugen@yulinu.edu.cn;
DOI: 10.14062/j.issn.0454-5648.20240005
中文作者单位:

西安科技大学建筑与土木工程学院;西安科技大学能源学院;榆林学院建筑工程学院;陕西省现代建筑设计研究院有限公司;

摘要(Abstract):

通过快速冻融试验,结合X射线计算机断层成像(CT)扫描技术和三维重构分析,在细观尺度上研究了不同氯盐浓度环境与冻融作用下混凝土剥落深度、体积损失率、孔隙结构和CT值的变化规律。基于CT数据建立了混凝土的损伤演化模型,并与波幅和质量定义的损伤进行了对比分析。结果表明:冻融与盐蚀耦合作用下混凝土主要发生砂浆剥落破坏,剥落深度和体积损失率随冻融次数的增加而增大。冻融过程中混凝土的损伤由表及里,随着表面砂浆剥落,部分闭口孔逐渐转为开口孔,最终消失,试样孔隙率整体呈波动增大趋势。氯盐浓度对混凝土冻融损伤发展速度影响显著,随着氯盐浓度的增加,混凝土的剥落深度和体积损失率呈先增大后减小的趋势。混凝土的超声波波幅随冻融次数的增加逐渐减小,二者存在较好的指数关系。试验设计的4种浓度中,3.5%(质量分数)氯盐溶液中的混凝土冻融破坏最严重。基于CT数据定义的损伤演化模型与波幅和质量表征的损伤度线性关系良好,且与质量损失率吻合度更高,说明该模型较好地反映了混凝土的损伤演化过程。

关键词(KeyWords): 冻融;盐蚀;混凝土;细观特征;扫描技术;损伤分析
参考文献

[1] WANG R J, ZHANG Q J, LI Y. Deterioration of concrete under the coupling effects of freeze–thaw cycles and other actions:A review[J].Constr Build Mater, 2022, 319:126045.

[2]武海荣,金伟良,张锋剑,等.关注环境作用的混凝土冻融损伤特性研究进展[J].土木工程学报, 2018, 51(8):37–46.WU Hairong, JIN Weiliang, ZHANG Fengjian, et al. China Civ Eng J,2018, 51(8):37–46.

[3] SKRIPKIūNAS G, NAGROCKIEN?D, GIRSKAS G, et al. The cement type effect on freeze–thaw and deicing salt resistance of concrete[J]. Procedia Eng, 2013, 57:1045–1051.

[4]王萧萧,申向东,王海龙,等.盐蚀-冻融循环作用下天然浮石混凝土的抗冻性[J].硅酸盐学报, 2014, 42(11):1414–1421.WANG Xiaoxiao, SHEN Xiangdong, WANG Hailong, et al. J Chin Ceram Soc, 2014, 42(11):1414–1421.

[5] YU H F, TAN Y S, YANG L M. Microstructural evolution of concrete under the attack of chemical, salt crystallization, and bending stress[J].J Mater Civ Eng, 2017, 29(7):04017041.

[6]王家滨,牛荻涛,何晖,等.盐湖侵蚀环境喷射混凝土耐久性能劣化规律及机理研究[J].土木工程学报, 2019, 52(6):67–80.WANG Jiabin, NIU Ditao, HE Hui, et al. China Civ Eng J, 2019, 52(6):67–80.

[7] LIU Z C, HANSEN W. Freeze–thaw durability of high strength concrete under deicer salt exposure[J]. Constr Build Mater, 2016, 102:478–485.

[8]李玉根,张慧梅,陈少杰,等.风积沙混凝土盐冻多尺度劣化机制[J].复合材料学报, 2023, 40(4):2331–2342.LI Yugen, ZHANG Huimei, CHEN Shaojie, et al. Acta Mater Compos Sin, 2023, 40(4):2331–2342.

[9]王振地,姚燕,王玲.冻融循环与氯盐侵蚀作用下混凝土变形和损伤分析[J].硅酸盐学报, 2012, 40(8):1133–1138.WANG Zhendi, YAO Yan, WANG Ling. J Chin Ceram Soc, 2012,40(8):1133–1138.

[10] CHEN S J, REN J X, LIU L, et al. Investigation of the dynamic compressive mechanical properties of concrete under the combined effects of freeze–thaw and salt erosion[J]. Constr Build Mater, 2023,407:133548.

[11]关虓,张鹏鑫,邱继生,等.冻融环境下活化煤矸石粉混凝土毛细吸水性能[J].建筑材料学报, 2023, 26(5):483–491.GUAN Xiao, ZHANG Pengxin, QIU Jisheng, et al. J Build Mater,2023, 26(5):483–491.

[12] LI Y G, ZHANG H M, CHEN S J, et al. Multi-scale study on the durability degradation mechanism of aeolian sand concrete under freeze–thaw conditions[J]. Constr Build Mater, 2022, 340:127433.

[13]金祖权,孙伟,张云升,等.混凝土在硫酸盐、氯盐溶液中的损伤过程[J].硅酸盐学报, 2006, 34(5):630–635.JIN Zuquan, SUN Wei, ZHANG Yunsheng, et al. J Chin Ceram Soc,2006, 34(5):630–635.

[14]乔宏霞,苏睿,李琼,等.基于Weibull分布的不同冻融介质下再生骨料透水混凝土耐久性能研究[J].功能材料, 2023, 54(3):3134–3142.QIAO Hongxia, SU Rui, LI Qiong, et al. J Funct Mater, 2023, 54(3):3134–3142.

[15]解国梁,申向东,刘金云,等.氯盐冻融耦合作用下再生混凝土损伤劣化规律[J].硅酸盐通报, 2021, 40(2):473–479.XIE Guoliang, SHEN Xiangdong, LIU Jinyun, et al. Bull Chin Ceram Soc, 2021, 40(2):473–479.

[16]熊勃勃,高磊,卢晓春,等.基于静水压理论的混凝土冻融破坏演化模型[J].工程力学, 2023, 40(4):184–192.XIONG Bobo, GAO Lei, LU Xiaochun, et al. Eng Mech, 2023, 40(4):184–192.

[17]冯博,刘青,钱永久.高性能混凝土在氯盐侵蚀和冻融循环作用下的耐久性分析[J].西南交通大学学报, 2023, 58(5):1083–1089.FENG Bo, LIU Qing, QIAN Yongjiu. J Southwest Jiaotong Univ,2023, 58(5):1083–1089.

[18]郭凯,佟舟,张树峰,等.冻融与氯盐侵蚀耦合作用下GO-RAC耐久性能研究[J/OL].建筑材料学报, 2023:1–12.[2023-06-05].https://kns.cnki.net/kcms/detail/31.1764.tu.20230603.1332.008.html.GUO Kai, TONG Zhou, ZHANG Shufeng, et al. J Build Mater, 2023:1–12.[2023–06–05]. https://kns.cnki.net/kcms/detail/31.1764.tu.20230603.1332.008.html.

[19]徐港,龚朝,刘俊,等.混凝土抗水冻融和抗盐冻融循环作用的相关性[J].建筑材料学报, 2020, 23(3):552–556.XU Gang, GONG Chao, LIU Jun, et al. J Build Mater, 2020, 23(3):552–556.

[20]杨全兵.混凝土盐冻破坏机理(Ⅱ):冻融饱水度和结冰压[J].建筑材料学报, 2012, 15(6):741–746.YANG Quanbing. J Build Mater, 2012, 15(6):741–746.

[21]邢秉元,程鹏宇,唐继朋,等.冻融循环作用下饱水砂浆孔结构的演变规律[J].硅酸盐学报, 2021, 49(2):331–339.XING Bingyuan, CHENG Pengyu, TANG Jipeng, et al. J Chin Ceram Soc, 2021, 49(2):331–339.

[22] WANG R J, HU Z Y, LI Y, et al. Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment[J]. Constr Build Mater, 2022, 321:126371.

[23]尚明刚,张云升,何忠茂,等.生活垃圾焚烧尾渣-次轻混凝土冻融劣化特性及微观机制[J].复合材料学报, 2023, 40(9):5241–5257.SHANG Minggang, ZHANG Yunsheng, HE Zhongmao, et al. Acta Mater Compos Sin, 2023, 40(9):5241–5257.

[24]王月,安明喆,余自若,等.氯盐侵蚀与冻融循环耦合作用下C50高性能混凝土的耐久性研究[J].中国铁道科学, 2014, 35(3):41–46.WANG Yue, AN Mingzhe, YU Ziruo, et al. China Railw Sci, 2014,35(3):41–46.

[25] SUZUKI T, OGATA H, TAKADA R, et al. Use of acoustic emission and X-ray computed tomography for damage evaluation of freezethawed concrete[J]. Constr Build Mater, 2010, 24(12):2347–2352.

[26] TIAN W, HAN N. Evaluation of damage in concrete suffered freeze-thaw cycles by CT technique[J]. J Adv Concr Technol, 2016,14(11):679–690.

[27]党发宁,雷光宇,丁卫华,等.混凝土静动力破坏过程的CT细观试验研究[J].水力发电学报, 2015, 34(1):189–196.DANG Faning, LEI Guangyu, DING Weihua, et al. J Hydroelectr Eng,2015, 34(1):189–196.

[28]郭东明,左建平,张慧,等.高强混凝土裂纹扩展规律的CT观察[J].硅酸盐学报, 2009, 37(10):1607–1612.GUO Dongming, ZUO Jianping, ZHANG Hui, et al. J Chin Ceram Soc,2009, 37(10):1607–1612.

[29] GB/T 50082—2009普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版社.

[30]游全伟,王薇,南纯,等.基于CT图像的混凝土细观模型构建方法研究[J].铁道科学与工程学报, 2023, 20(9):3385–3395.YOU Quanwei, WANG Wei, NAN Chun, et al. J Railw Sci Eng, 2023,20(9):3385–3395.

[31]方建银,党发宁,李晓荣,等.混凝土单轴压缩CT试验过程定量化分析[J].水力发电学报, 2015, 34(5):140–146.FANG Jianyin, DANG Faning, LI Xiaorong, et al. J Hydroelectr Eng,2015, 34(5):140–146.

[32]吴倩云,马芹永.冻融循环作用下BSFC的抗冻性及损伤模型[J].建筑材料学报, 2021, 24(6):1169–1178.WU Qianyun, MA Qinyong. J Build Mater, 2021, 24(6):1169–1178.

[33]乔雨,刘泽峰.盐冻作用下掺粉煤灰混凝土超声波波速测强理论模型[J].水电能源科学, 2019, 37(8):118–121.QIAO Yu, LIU Zefeng. Water Resour Power, 2019, 37(8):118–121.

[34]李娜,赵燕茹.基于X-ray CT技术研究混凝土内部损伤的研究进展[J].材料导报, 2021, 35(21):21169–21177.LI Na, ZHAO Yanru. Mater Rep, 2021, 35(21):21169–21177.

[35]敖波,张定华,赵歆波,等. CT图像中裂纹缺陷的理论分析[J]. CT理论与应用研究, 2005, 14(4):10–16.AO Bo, ZHANG Dinghua, ZHAO Xinbo, et al. Comput Tomogr Theory Appl, 2005, 14(4):10–16.

[36]刘慧,杨更社,叶万军,等.基于CT图像直方图技术的冻结岩石未冻水含量及损伤特性分析[J].冰川冻土, 2015, 37(6):1591–1598.LIU Hui, YANG Gengshe, YE Wanjun, et al. J Glaciol Geocryol, 2015,37(6):1591–1598.

[37]高小宇,孙洋,吴关良,等.基于超声波声学特性的混凝土损伤表征试验研究[J].低温建筑技术, 2020, 42(4):31–34.GAO Xiaoyu, SUN Yang, WU Guanliang, et al. Low Temp Archit Technol, 2020, 42(4):31–34.

[38]刘光启.化学化工物性数据手册-无机卷[M].北京:化学工业出版社, 2002:600–605.LIU Guangqi. Handbook of physical properties of chemistry and chemical engineering-inorganic volume[M]. Beijing:Chemical Industry Press, 2002:600–605.

[39] JIANG Z W, HE B, ZHU X P, et al. State-of-the-art review on properties evolution and deterioration mechanism of concrete at cryogenic temperature[J]. Constr Build Mater, 2020, 257:119456.

基本信息:

DOI:10.14062/j.issn.0454-5648.20240005

中图分类号:TU528

引用信息:

[1]陈少杰,任建喜,刘浪等.冻融与盐蚀耦合作用下混凝土的细观特征与损伤演化规律[J].硅酸盐学报,2024,52(11):3524-3536.DOI:10.14062/j.issn.0454-5648.20240005.

基金信息:

国家自然科学基金(52268047); 陕西省自然科学基础研究计划(2024JC-YBQN-0610); 陕西省博士后科研项目(2023BSH EDZZ310); 陕西省“四主体一联合”地下结构抗震校企联合研究中心开放基金(KY2024-YB01); 榆林市科技计划项目(CXY-2022-157)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文