4,433 | 72 | 17 |
下载次数 | 被引频次 | 阅读次数 |
热电材料可以实现热能和电能的直接相互转换,在温差发电和固态制冷等领域具有重要应用,受到了学术界和工业界的广泛关注。本工作首先简述了热电材料研究的相关背景,然后根据材料工作的温度,对室温附近、中温区以及高温区一些典型热电材料的最新研究进展进行了概述,重点介绍了材料的晶体结构特点和性能优化策略。在此基础上阐述了热电能量转换技术在材料、器件和研发模式等方面所面临的困难和挑战。最后,对热电材料未来的发展方向提出了展望。
Abstract:Thermoelectric materials(TE), which enable the direct energy conversion between heat and electricity, have attracted global attention in both academic and industrial sections, due to their significant applications in power generation and refrigeration. In this review, the research background of thermoelectrics will be introduced first, while the recent progress on several widely studied thermoelectric materials will be overviewed according to their working temperatures. In particular, their crystal structure characteristics and performance optimization strategies will be highlighted. The difficulties and challenges faced in thermoelectric technology, in terms of materials development, device fabrication and R&D modes, will be discussed. Finally, the prospect and expectation for the further development of thermoelectrics will be put forward.
[1]陈立东,刘睿恒,史迅.热电材料与器件[M].北京:科学出版社,2017:6-7.
[2]张宗委,王心宇,刘一杰,等.热电能源材料研究进展[J].硅酸盐学报,2018,46(2):288-305.
[3]KIM S I,LEE K H,MUN H A,et al.Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J].Science,2015,348(6230):109-114.
[4]POUDEL B,HAO Q,MA Y,et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J].Science,2008,320(5876):634-638.
[5]ZHAO H,SUI J,TANG Z,et al.High thermoelectric performance of Mg Ag Sb-based materials[J].Nano Energy,2014,7:97-103.
[6]MAO J,ZHU H,DING Z,et al.High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J].Science,2019,365(6452):495-498.
[7]PEI Y,SHI X,LALONDE A,et al.Convergence of electronic bands for high performance bulk thermoelectrics[J].Nature,2011,473(7345):66-69.
[8]SHI X,YANG J,SALVADOR J R,et al.Multiple-filled skutterudites:high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J].J Am Chem Soc,2011,133(20):7837-7846.
[9]LI J,ZHANG X,CHEN Z,et al.Low-symmetry rhombohedral Ge Te thermoelectrics[J].Joule,2018,2(5):976-987.
[10]LIU W,TAN X,YIN K,et al.Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions[J].Phys Rev Lett,2012,108(16):166601.
[11]PLIRDPRING T,KUROSAKI K,KOSUGA A,et al.Chalcopyrite Cu Ga Te2:a high-efficiency bulk thermoelectric material[J].Adv Mater,2012,24(27):3622-3626.
[12]LIU R,XI L,LIU H,et al.Ternary compound Cu In Te2:a promising thermoelectric material with diamond-like structure[J].Chem Commun,2012,48 (32):3818-3820.
[13]ZHAO L D,LO S H,ZHANG Y,et al.Ultralow thermal conductivity and high thermoelectric figure of merit in Sn Se crystals[J].Nature,2014,508(7496):373-377.
[14]SHI X,ZHAO T,ZHANG X,et al.Extraordinary n-type Mg3Sb Bi thermoelectrics enabled by yttrium doping[J].Adv Mater,2019,31(36):1903387.
[15]ZHAO L D,HE J,BERARDAN D,et al.Bi Cu Se O oxyselenides:new promising thermoelectric materials[J].Energy Environ Sci,2014,7(9):2900-2924.
[16]JOSHI G,LEE H,LAN Y,et al.Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys[J].Nano Lett,2008,8 (12):4670-4674.
[17]ZHU T,FU C,XIE H,et al.High efficiency half-Heusler thermoelectric materials for energy harvesting[J].Adv Energy Mater,2015,5(19):1500588.
[18]MAY A F,FLEURIAL J P,SNYDER G J.Thermoelectric performance of lanthanum telluride produced via mechanical alloying[J].Phys Rev B,2008,78(12):125205.
[19]ZHAO K,QIU P,SHI X,et al.Recent advances in liquid-like thermoelectric materials[J].Adv Funct Mater,2019,30(8):1903867.
[20]SLACK G A.New materials and performance limits for thermoelectric cooling[M].Rowe D M.CRC Handbook of Thermoelectrics.Boca Raton:CRC Press,1995:407-440.
[21]HICKS L,DRESSELHAUS M.Effect of quantum-well structures on the thermoelectric figure of merit[J].Phys Rev B,1993,47(19):12727-12731.
[22]BISWAS K,HE J,BLUM I D,et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures[J].Nature,2012,489(7416):414-418.
[23]ROGL G,GRYTSIV A,ROGL P,et al.n-type skutterudites(R,Ba,Yb)yCo4Sb12 (R=Sr,La,Mm,DD,Sr Mm,Sr DD) approaching ZT≈2.0[J].Acta Mater,2014,63:30-43.
[24]HEREMANS J P,JOVOVIC V,Toberer E S,et al.Enhancement of thermoelectric efficiency in Pb Te by distortion of the electronic density of states[J].Science,2008,321(5888):554-557.
[25]ZHANG Z,ZHAO K,WEI T R,et al.Cu2Se-based liquid-like thermoelectric materials:looking back and stepping forward[J].Energy Environ Sci,2020,13(10):3307-3329.
[26]ZHAO,K.,LIU,K,YUE,Z,et al.Are Cu2Te-based compounds excellent thermoelectric materials?[J].Adv Mater,2019,31 (49):1903480.
[27]OLVERA A A,MOROZ N A,SAHOO P,et al.Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se[J].Energy Environ Sci,2017,10(7):1668-1676.
[28]ZHAO L,WANG X,FEI F Y,et al.High thermoelectric and mechanical performance in highly dense Cu2-xS bulks prepared by a melt-solidification technique[J].J Mater Chem A,2015,3:9432-9437.
[29]MAO T,QIU P,DU X,et al.Enhanced thermoelectric performance and service stability of Cu2Se via tailoring chemical compositions at multiple atomic positions[J].Adv Funct Mater,2019,30(6):1908315.
[30]TAMAKI H,SATO H K,KANNO T.Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance[J].Adv Mater,2016,28(46):10182-10187.
[31]ZHANG J,SONG L,PEDERSEN S H,et al.Discovery of highperformance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J].Nat Commun,2017,8:13901.
[32]SHUAI J,MAO J,SONG S,et al.Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties[J].Energy Environ Sci,2017,10(3):799-807.
[33]REN Z,SHUAI J,MAO J,et al.Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn[J].Acta Mater,2018,143:265-271.
[34]ZHAO L D,TAN G,HAO S,et al.Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal Sn Se[J].Science,2016,351(6269):141-144.
[35]CHANG C,WU M,HE D,et al.3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type Sn Se crystals[J].Science,2018,360(6390):778-783.
[36]CHANG C,TAN Q,PEI Y,et al.Raising thermoelectric performance of n-type Sn Se via Br doping and Pb alloying[J].RSC Adv,2016,6(100):98216-98220.
[37]CHEN Y X,GE Z H,YIN M,et al.Understanding of the extremely low thermal conductivity in high-performance polycrystalline Sn Se through potassium doping[J].Adv Funct Mater,2016,26:6836-6845.
[38]ZHANG J,LIU R,CHENG N,et al.High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds[J].Adv Mater,2014,26(23):3848-3853.
[39]LI Y,LIU G,CAO T,et al.Enhanced thermoelectric properties of Cu2Sn Se3 by (Ag,In)-Co-doping[J].Adv Funct Mater,2016,26(33):6025-6032.
[40]WEI T R,WANG H,GIBBS Z M,et al.Thermoelectric properties of Sn-doped p-type Cu3Sb Se4:a compound with large effective mass and small band gap[J].J Mater Chem A,2014,2(33):13527-13533.
[41]SHI X Y,HUANG F Q,LIU M L,et al.Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2Zn Sn1-xInxSe4[J].Appl Phys Lett,2009,94(12):122103.
[42]LIU R,CHEN H,ZHAO K,et al.Entropy as a gene-like performance indicator promoting thermoelectric materials[J].Adv Mater,2017,29(38):1702712.
[43]SHI X,CHEN H,HAO F,et al.Room-temperature ductile inorganic semiconductor[J].Nat Mater,2018,17:421-426.
[44]LIANG J,WANG T,QIU P,et al.Flexible thermoelectrics:from silver chalcogenides to full-inorganic devices[J].Energy Environ Sci,2019,12(10):2983-2990.
[45]HU L,ZHU T,WANG Y,et al.Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction[J].NPG Asia Mater,2014,6 (2):88.
[46]HAO F,QIU P,TANG Y,et al.High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and300℃[J].Energy Environ Sci,2016,9:3120-3127.
[47]HU L,ZHU T,LIU X,et al.Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[J].Adv Funct Mater,2014,24(33):5211-5218.
[48]HU L,WU H,ZHU T,et al.Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions[J].Adv Energy Mater,2015,5(17):1500411.
[49]PAN Y,QIU Y,WITTING I,et al.Synergistic modulation of mobility and thermal conductivity in (Bi,Sb)2Te3 towards high thermoelectric performance[J].Energy Environ Sci,2019,12(2):624-630.
[50]MI W,QIU P,ZHANG T,et al.Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions[J].Appl Phys Lett,2014,104(13):133903.
[51]JOOD P,CHETTY R,OHTA M.Structural stability enables high thermoelectric performance in room temperature Ag2Se[J].J Mater Chem A,2020,8(26):13024-13037.
[52]YING P,LIU X,FU C,et al.High performanceα-Mg Ag Sb thermoelectric materials for low temperature power generation[J].Chem Mater,2015,27(3):909-913.
[53]LIU Z,MAO J,SUI J,et al.High thermoelectric performance ofα-Mg Ag Sb for power generation[J].Energy Environ Sci,2018,11(1):23-44.
[54]TAN G,SHI F,HAO S,et al.Non-equilibrium processing leads to record high thermoelectric figure of merit in Pb Te-Sr Te[J].Nat Commun,2016,7:12167.
[55]WU D,ZHAO L D,TONG X,et al.Superior thermoelectric performance in Pb Te-Pb S pseudo-binary:extremely low thermal conductivity and modulated carrier[J].Energy Environ Sci,2015,8(7):2056-2068.
[56]HSU K F,LOO S,GUO F,et al.Cubic Ag PbmSb Te2+m:bulk thermoelectric materials with high figure of merit[J].Science,2004,303(5659):818-821.
[57]JIANG B,LIU X,WANG Q,et al.Realizing high-efficiency power generation in low-cost Pb S-based thermoelectric materials[J].Energy Environ Sci,2020,13(2):579-591.
[58]PEI Y Z,YANG J,CHEN L D,et al.Improving thermoelectric performance of caged compounds through light-element filling[J].Appl Phys Lett,2009,95(4):042101.
[59]SHI X,KONG H,LI C P,et al.Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites[J].Appl Phys Lett,2008,92(18):182101.
[60]张骐昊,刘睿恒,廖锦城,等.填充方钴矿热电器件的结构优化设计与性能[J].硅酸盐学报,2021,49(2):211-219.
[61]ZHAO W,LIU Z,SUN Z,et al.Superparamagnetic enhancement of thermoelectric performance[J].Nature,2017,549(7671):247-251.
[62]ZHAO W,LIU Z,WEI P,et al.Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials[J].Nat Nanotechnol,2016,12:55-61.
[63]ZHANG Q,ZHOU Z,DYLLA M,et al.Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites[J].Nano Energy,2017,41:501-510.
[64]TAN G,SHI F,HAO S,et al.Valence band modification and high thermoelectric performance in Sn Te heavily alloyed with Mn Te[J].JAm Chem Soc,2015,137(35):11507-11516.
[65]TANG J,GAO B,LIN S,et al.Manipulation of band structure and interstitial defects for improving thermoelectric Sn Te[J].Adv Funct Mater,2018,28(34):1803586.
[66]ZHENG Z,SU X,DENG R,et al.Rhombohedral to cubic conversion of Ge Te via Mn Te alloying leads to ultralow thermal conductivity,electronic band convergence,and high thermoelectric performance[J].J Am Chem Soc,2018,140(7):2673-2686.
[67]DONG J,SUN F H,TANG H,et al.Medium-temperature thermoelectric Ge Te:vacancy suppression and band structure engineering leading to high performance[J].Energy Environ Sci,2019,12(4):1396-1403.
[68]HONG M,LYV W,LI M,et al.Rashba Effect Maximizes Thermoelectric Performance of Ge Te Derivatives[J].Joule,2020,4(9):2030-2043.
[69]XING T,SONG Q,QIU P,et al.Superior performance and high service stability for Ge Te-based thermoelectric compounds[J].Nat Sci Rev,2019,6(5):944-954.
[70]LIU W,KIM H S,CHEN S,et al.n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation[J].Proc Natl Acad Sci USA,2015,112(11):3269-3274.
[71]QIU P,AGNE M T,LIU Y,et al.Suppression of atom motion and metal deposition in mixed ionic electronic conductors[J].Nat Commun,2018,9(1):2910.
[72]MAO T,QIU P,HU P,et al.Decoupling thermoelectric performance and stability in liquid-like thermoelectric materials[J].Adv Sci,2020,7(1):1901598.
[73]QIU P,Mao T,HUANG Z,et al.High-efficiency and stable thermoelectric module based on liquid-like materials[J].Joule,2019,3(6):1538-1548.
[74]YAN X,JOSHI G,LIU W,et al.Enhanced thermoelectric figure of merit of p-type half-Heuslers[J].Nano Lett,2011,11(2):556-560.
[75]JOSHI G,YAN X,WANG H,et al.Enhancement in thermoelectric figure-of-merit of an n-type half-Heusler compound by the nanocomposite approach[J].Adv Energy Mater,2011,1(4):643-647.
[76]YU J,FU C,LIU Y,et al.Unique role of refractory Ta alloying in enhancing the figure of merit of Nb Fe Sb thermoelectric materials[J].Adv Energy Mater,2018,8(1):1701313.
[77]FU C,BAI S,LIU Y,et al.Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[J].Nat Commun,2015,6:8144.
[78]XING Y,LIU R,LIAO J,et al.High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization[J].Energy Environ Sci,2019,12(11):3390-3399.
[79]XING Y,LIU R,LIAO J,et al.A device-to-material strategy guiding the“double-high”thermoelectric module[J].Joule,2020,4 (11):2475-2483.
基本信息:
DOI:10.14062/j.issn.0454-5648.20200925
中图分类号:TB34
引用信息:
[1]徐庆,赵琨鹏,魏天然等.热电材料的研究现状与未来展望[J].硅酸盐学报,2021,49(07):1296-1305.DOI:10.14062/j.issn.0454-5648.20200925.
基金信息:
国家自然科学基金(2018YFB0703600)