nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2024 10 v.52;No.427 3180-3191
氧化铜/海泡石催化过滤膜的制备及其过硫酸盐活化性能
基金项目(Foundation): 国家自然科学基金资助项目(51774330)
邮箱(Email): kliu@csu.edu.cn;
DOI: 10.14062/j.issn.0454-5648.20230972
中文作者单位:

中南大学资源加工与生物工程学院;中南大学矿物材料及其应用湖南省重点实验室;江西理工大学资源与环境工程学院;

摘要(Abstract):

为了开发具有高活性、高稳定性和绿色环保的过硫酸盐催化剂,采用浸渍–过滤成膜–干燥–煅烧的方法制备一种CuO/海泡石催化过滤膜,并对其催化过硫酸盐的性能和活化机理进行了探究。通过X射线衍射仪、扫描电子显微镜、透射电子显微镜等手段详细表征了Cu O/海泡石催化过滤膜的晶体结构、形貌、表面性质等,明确了制备催化过滤膜的最佳条件(煅烧温度为400℃、硝酸铜溶液的浓度为20 mmol/L)。经过连续催化降解15 L的10 mg/L的对硝基苯酚(PNP)溶液后,CS-400催化过滤膜的性能未出现明显下降且结构未被明显腐蚀。最后,通过自由基淬灭实验证明了羟基自由基(·OH)和单线态氧(~1O_2)是此催化反应体系中降解PNP的主要活性物质,并提出了可能的催化机理。

关键词(KeyWords): 氧化铜;;海泡石;;过硫酸盐;;催化过滤膜
参考文献

[1] CHAUHAN R, DINESH G K, ALAWA B, et al. A critical analysis of sono-hybrid advanced oxidation process of ferrioxalate system for degradation of recalcitrant pollutants[J]. Chemosphere, 2021,277:130324.

[2]潘良.铜铁氧化物/石墨烯复合材料催化过硫酸盐处理偶氮染料甲基橙的研究[D].南昌:华东交通大学, 2020.PAN Liang. Copper iron oxide/graphene composite catalyzes persulfate treatment of azo dye methyl orange[D]. Nanchang:East China Jiaotong University, 2020.

[3] KONG L S, FANG G D, FANG Z, et al. Peroxymonosulfate activation by localized electrons of ZnO oxygen vacancies for contaminant degradation[J]. Chem Eng J, 2021, 416:128996.

[4] ZHU M P, YANG J C E, DUAN X G, et al. Engineered Co2AlO4/CoAl2O4@Al2O3monolithic catalysts for peroxymonosulfate activation:Co3+/Co2+and ODefect/OLattice ratios dependence and mechanism[J]. Chem Eng J, 2021, 409:128162.

[5] ZHANG S, SUN M, HEDTKE T, et al. Mechanism of heterogeneous Fenton reaction kinetics enhancement under nanoscale spatial confinement[J]. Environ Sci Technol, 2020,54(17):10868–10875.

[6] CHEN Y, ZHANG G, LIU H J, et al. Confining free radicals in close vicinity to contaminants enables ultrafast fenton-like processes in the interspacing of MoS2 membranes[J]. Angew Chem Int Ed, 2019, 58(24):8134–8138.

[7] REIF M, DITTMEYER R. Porous, catalytically active ceramic membranes for gas–liquid reactions:A comparison between catalytic diffuser and forced through flow concept[J]. Catal Today,2003, 82(1–4):3–14.

[8] ZHOU M Z, CHEN J J, YU S N, et al. The coupling of persulfate activation and membrane separation for the effective pollutant degradation and membrane fouling alleviation[J]. Chem Eng J,2023, 451:139009.

[9] WANG S, TIAN J, WANG Q, et al. Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation:a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation[J]. Applied Catalysis B:Environmental,2019, 256:117783.

[10] CHEN L, MAQBOOL T, NAZIR G, et al. Developing the large-area manganese-based catalytic ceramic membrane for peroxymonosulfate activation:Applications in degradation of endocrine disrupting compounds in drinking water[J]. J Membr Sci, 2022, 655:120602.

[11]孙莉.镁系矿物膜吸附材料的制备及其性能研究[D].青岛:中国海洋大学, 2015.SUN Li. Preparation and properties of magniferous minerals membrane adsorbents[D]. Qingdao:Ocean University of China,2015.

[12]常婕,李稣领,李晨佳,等.以海泡石为载体的催化剂研究进展[C]//第十四届全国工业催化技术及应用年会论文集.安阳,2017:16–23.

[13] LUPAN O, POSTICA V, CRETU V, et al. Single and networked CuO nanowires for highly sensitive p-type semiconductor gas sensor applications[J]. Phys Status Solidi RRL, 2016, 10(3):260–266.

[14] KIM S H, UMAR A, KUMAR R, et al. Facile synthesis and photocatalytic activity of cocoon-shaped CuO nanostructures[J].Mater Lett, 2015, 156:138–141.

[15] XING J J, PENG Q, ZHONG W L, et al. Highly efficient activation of peroxymonosulfate by novel CuO-Chrysotile catalytic membrane for degradation of p-nitrophenol[J]. J Water Process Eng, 2023, 51:103403.

[16] LI B K, CHEN X, MA Y D, et al. Catalytic behavior of a thermo-responsive PVDF/microgel@Pd membrane for 2-nitroaniline degradation[J]. J Environ Chem Eng, 2021, 9(2):104757.

[17] ZHANG Y D, WANG L J, WANG F, et al. Phase transformation and morphology evolution of sepiolite fibers during thermal treatment[J]. Appl Clay Sci, 2017, 143:205–211.

[18]宋功保,彭同江,董发勤,等.海泡石的红外光谱研究[J].矿物学报, 1998, 18(4):525–532.SONG Gongbao, PENG Tongjiang, DONG Faqin, et al. Acta Mineral Sin, 1998, 18(4):525–532.

[19] DONG X B, REN B X, SUN Z M, et al. Monodispersed CuFe2O4nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation[J]. Appl Catal B Environ, 2019, 253:206–217.

[20] DAUD M, HAI A, BANAT F, et al. A review on the recent advances, challenges and future aspect of layered double hydroxides(LDH)–Containing hybrids as promising adsorbents for dyes removal[J]. J Mol Liq, 2019, 288:110989.

[21] BEN HAMMOUDA S, ZHAO F P, SAFAEI Z, et al. Sulfate radical-mediated degradation and mineralization of bisphenol F in neutral medium by the novel magnetic Sr2CoFeO6 double perovskite oxide catalyzed peroxymonosulfate:Influence of co-existing chemicals and UV irradiation[J]. Appl Catal B Environ,2018, 233:99–111.

[22]杨蕾,于振江,刘洁,等.光催化自清洁膜的发展现状及其在厕所污水处理中的应用展望[J].净水技术, 2021, 40(3):33–41.YANG Lei, YU Zhenjiang, LIU Jie, et al. Water Purif Technol,2021, 40(3):33–41.

[23] LEI Y, YU Y F, LEI X, et al. Assessing the use of probes and quenchers for understanding the reactive species in advanced oxidation processes[J]. Environ Sci Technol, 2023, 57(13):5433–5444.

[24] XIE Z H, HE C S, PEI D N, et al. Review of characteristics,generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes(AOPs)[J]. Chem Eng J, 2023, 468:143778.

[25] BARRIOS B, MOHRHARDT B, DOSKEY P V, et al.Mechanistic insight into the reactivities of aqueous-phase singlet oxygen with organic compounds[J]. Environ Sci Technol, 2021,55(12):8054–8067.

[26] QI C D, LIU X T, MA J, et al. Activation of peroxymonosulfate by base:Implications for the degradation of organic pollutants[J].Chemosphere, 2016, 151:280–288.

[27] ZHU M P, YANG J C E, DUAN X G, et al. Interfacial CoAl2O4from ZIF-67@γ-Al2O3 pellets toward catalytic activation of peroxymonosulfate for metronidazole removal[J]. Chem Eng J,2020, 397:125339.

[28] XU Y, AI J, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J].J Hazard Mater, 2016, 309:87–96.

[29] CHEN Z Q, WANG L Y, XU H D, et al. Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A[J]. Chem Eng J, 2020, 389:124345.

[30] LI H, SHANG H, CAO X M, et al. Oxygen vacancies mediated complete visible light NO oxidation via side-on bridging superoxide radicals[J]. Environ Sci Technol, 2018, 52(15):8659–8665.

[31] ZHOU L, SONG W, CHEN Z Q, et al. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst[J]. Environ Sci Technol,2013, 47(8):3833–3839.

基本信息:

DOI:10.14062/j.issn.0454-5648.20230972

中图分类号:O643.36;TQ051.893

引用信息:

[1]彭倩,邢佳杰,钟婉菱等.氧化铜/海泡石催化过滤膜的制备及其过硫酸盐活化性能[J].硅酸盐学报,2024,52(10):3180-3191.DOI:10.14062/j.issn.0454-5648.20230972.

基金信息:

国家自然科学基金资助项目(51774330)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文