545 | 12 | 9 |
下载次数 | 被引频次 | 阅读次数 |
通过水化热、热分析等手段研究了两种具有相同侧链长度,但桥接基团不同(酯基、醚键)的聚羧酸系超塑化剂(PCs)对铝酸三钙(C3A)-石膏水化行为的影响。结果表明:当石膏与C3A的摩尔比为0.3时,PCs的加入能促进硫酸根的消耗,加快C3A的溶解,有利于单硫型硫铝酸盐(AFm)的沉淀,但对水榴石(C3AH6)的生长具有抑制作用。PCs的化学结构与其吸附能力息息相关,侧链桥接基团为酯基时,PCs在C3A-石膏体系中的吸附量较大,对C3AH6的生长抑制作用更强。由于PCs与硫酸根离子在C3A颗粒表面发生竞争吸附,PCs部分占据颗粒表面的溶解点,进而释放出额外的自由硫酸根离子,这是PCs促进硫酸根消耗并加速AFm相形成的原因。
Abstract:The impact of two comb-like copolymer dispersants(PCs) with either ester(-COO-) or ether(-C-O-C-) linkages on the hydration behavior of C3A-gypsum suspension was investigated via conduction calorimetry and thermal analysis.The addition of PCs accelerated the depletion of sulphate as well as the dissolution of C3A at the gypsum/C3A molar ratio of 0.3,resulting in an increase of the formation of monosulfoaluminate phase and a decrease of C3AH6 precipitation.Moreover,the chemical structure of PCs was cor-related to its adsorption behavior.The PCs with ester linkage induced a greater adsorption on the C3A-gypsum system,leading to a stronger retardation of C3AH6 precipitation.It was assumed that the competitive adsorption between PCs and sulphate could cause the dissolution sites of C3A that were partly occupied by PCs.The AFm precipitation and sulphate consumption both increased at a greater amount of extra sulphate released in the pore solution.
[1]侯珊珊,孔祥明,曹恩祥,等.水泥基体系中聚羧酸系高效减水剂的化学结构对其性能的影响[J].硅酸盐学报,2010,38(9):1698-1701.HOU Shanshan,KONG Xiangming,CAO Enxiang,et al.J Chin Ce-ram Soc,2010,38(9):1698-1701.
[2]冉千平,缪昌文,刘加平,等.梳形共聚物分散剂侧链长度对水泥浆体分散性能的影响及机理[J].硅酸盐学报,2009,37(7):1153-1159.RAN Qianping,MIAO Changwen,LIU Jiaping,et al.J Chin CeramSoc,2009,37(7):1153-1159.
[3]ZINGG A,WINNEFELD F,HOLZER L,et al.Adsorption of polyelec-trolytes and its influence on the rheology,zeta potential,and micro-structure of various cement and hydrate phases[J].J Colloid InterfaceSci,2008,323(2):301-312.
[4]PLANK J,HIRSCH C.Impact of zeta potential of early cement hydra-tion phases on superplasticizer adsorption[J].Cem Concr Res,2007,37(4):537-42.
[5]YOSHIOKA K,TAZAWA E I,KAWAI K,et al.Adsorption character-istics of superplasticizers on cement component minerals[J].CemConcr Res,2002,32(10):1507-1513.
[6]MINARD H,GARRAULT S,REGNAUD L,et al.Mechanisms andparameters controlling the tricalcium aluminate reactivity in the pres-ence of gypsum[J].Cem Concr Res,2007,37(10):1418-1426.
[7]POURCHEZ J,GROSSEAU P,RUOT B.Current understanding ofcellulose ethers impact on the hydration of C3A and C3A-sulphate sys-tems[J].Cem Concr Res,2009,39(8):664-669.
[8]SCRIVENER K L,NONAT A.Hydration of cementitious materials,present and future[J].Cem Concr Res,2011,41(7):651-665.
[9]BULLARD J W,JENNINGS H M,LIVINGSTON R A.Mechanismsof cement hydration[J].Cem Concr Res,2011,41(12):1208-1223.
[10]GOETZ-NEUNHOEFFER F,NEUBAUER J,SCHWESIG P.Minera-logical characteristics of Ettringites synthesized from solutions andsuspensions[J].Cem Concr Res,2006,36(1):65-70.
[11]LIU J P,RAN Q P,MIAO C W.Synthesis and characterization ofcomb-Like copolymer dispersant with methoxy poly(ethylene oxide)side chains[J].Polym Plast Technol Eng,2011,50(1):59-66.
[12]Taylor H F W.Cement Chemistry[M].2nd Ed.London:ThomasTelford,1997.
[13]POURCHET S,REGNAUD L,PEREZ J P,et al.Early C3A hydrationin the presence of different kinds of calcium sulfate[J].Cem ConcrRes,2009,39(11):989-996.
[14]YILMAZ V,GLASSER F P.Early hydration of tricalcium alumi-nate-gypsum mixtures in the presence of sulphonated melamine for-maldehyde superplasticizer[J].Cem Concr Res,1991,21(5):765-776.
[15]RAMACHANDRAN V S.Adsorption and hydration behavior of trical-cium aluminate-water and tricalcium aluminate-gypsum-water systemsin the presence of superplasticizers[J].J Am Concr Inst,1983,80(3):235-241.
[16]PLANK J,ZHIMIN D,KELLER H.Fundamental mechanisms forpolycarboxylate intercalation into C3A hydrate phases and the role ofsulfate present in cement[J].Cem Concr Res,2010,40(1):45-57.
基本信息:
DOI:10.14062/j.issn.0454-5648.2012.05.014
中图分类号:TU528.042.2
引用信息:
[1]俞寅辉,刘加平,冉千平等.聚羧酸系超塑化剂对铝酸三钙-石膏水化行为的影响[J].硅酸盐学报,2012,40(05):685-690.DOI:10.14062/j.issn.0454-5648.2012.05.014.
基金信息:
国家“973”计划(2009CB623205);; 江苏省自然科学基金(2008507,2007722)资助项目