965 | 6 | 12 |
下载次数 | 被引频次 | 阅读次数 |
利用水热合成和高温活化处理对Li4Ti5O12进行多孔碳包覆复合改性实验,制备了Li4Ti5O12@porous-C复合材料,研究了复合材料微观结构和电化学性能。结果表明:Li4Ti5O12完全被包覆在多孔碳层中,同时,Li4Ti5O12@porous-C复合材料表面碳层孔洞分布均匀,碳层厚度约为(8.5±3.6) nm。其首次放电比容量为363 m Ah/g,约为纯Li4Ti5O12放电比容量的2倍;交流阻抗值降低,仅为纯Li4Ti5O12的阻抗值的一半;Li4Ti5O12@porous-C复合材料在循环200周后的放电比容量为251 m Ah/g,容量保持率为97.7%(纯LTO的比容量为143 m Ah/g,保持率为94.7%),放电比容量提高了近1倍,而且特别是在不同放电速率下进行倍率测试时,其可逆容量比Li4Ti5O12提高超1.5倍。对Li4Ti5O12表面进行多孔碳包覆改性,可以同时提高其比表面积和电子传输速率,这也是其电化学性能也显著提高的主要原因。
Abstract:A composite of porous carbon coated Li4Ti5O12 was prepared by a hydrothermal synthesis and high-temperature activation method.The microstructure and electrochemical properties of the composite were investigated.The results show that Li4Ti5O12 is completely coated on the porous carbon layer.Meanwhile,the surface pores of Li4Ti5O12@porous C composite are evenly distributed,and the carbon layer thickness is approximately (8.5±3.6) nm.The discharge capacity at first cycle is 363 m Ah/g,which is approximately twice greater than that of pure Li4Ti5O12.The AC impedance value of Li4Ti5O12@porous C composite decreases,which is only the half of that of pure Li4Ti5O12.The discharge specific capacity of Li4Ti5O12@porous-C composite is 251 m Ah/g and the retention rate is 97.7%after 200 cycles (i.e.,the specific capacity of pure Li4Ti5O12 is 143 m Ah/g and the retention rate is 94.7%),the discharge specific capacity is nearly doubled,especially when the rate test is carried out at different discharge rates.The reversible capacity is twice greater than that of Li4Ti5O12.The porous carbon coated modification of Li4Ti5O12 can increase the specific surface area and the electron transfer rate for the higher electrochemical properties.
[1] MAROM R, AMALRAJ S, LEIFER N. A review of advanced and practical lithium battery materials[J]. J Mater Chem, 2011, 21:9938–9954.
[2]郭向欣,黄诗婷,赵宁,等.二次锂空气电池研究的快速发展及其急需解决的关键科学问题[J].无机材料学报, 2014, 29:113–123.GUO Xiangxin, HUANG Shiting, ZHAO Ning, et al. J Inorg Mater(in Chinese), 2014, 29:113–123.
[3] GIRISHKUMAR G, MCCLOSKEY B, LUNTZ A C, et al. Lithium-air battery promise and challenges[J]. J Phys Chem Lett, 2010, 1(14):2193–2203.
[4]严丹林.锂离子电池电极材料的制备及电化学性能研究[D].广州:华南理工大学, 2016.YAN Danlin. Synthesis and Performance of electrode materials for Li-ion batteries(in Chinese, dissertation). Guangzhou:South China University of Technology, 2016.
[5] YANG X L, WANG Y, CAO H K, et al. Research progress of high voltage electrolyte for lithium ion battery[J]. Power Supply Technol,2012, 36(8):1235?1238.
[6] HUANG S H, WEN Z Y, ZHANG J C, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery[J]. Solid State Ionics,2006, 177(9/10):851–855.
[7] YANG Z, CHOI D, KERISIT S, et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides A review[J]. J Power Sources, 2009, 192(2):588–598.
[8] CHEN C H, VAUGHE Y J T, JANSEN A. N, et al. Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes(0≤x≤1)for lithium batteries[J]. J Electrochem Soc, 2001, 148(1):A102–A105.
[9] TAN Y, XUE B. Research progress on lithium titanate as anode material in lithium-ion battery[J]. J Inorg Mater, 2018, 33(5):475–482.
[10] Park K S, BENAYAD A, KANG D J, et al. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries[J]. J Am Chem Soc,2008, 130(45):14930–14931.
[11] CHENG L, LI X L, LIU H J, et al. Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation[J]. J Electr Chem Soc,2007, 154(7):A692–A697.
[12] KIM S, ALAUZUN J G, LOUVAIN N, et al. Alginic acid aqua gel as a template and carbon source in the synthesis of Li4Ti5O12/C nanocomposites for application as anodes in Li-ion batteries[J]. RSC Adv, 2018, 57(8):32558–32564.
[13] ZHU J, ZHANG Y. Hydrothermal synthesis of Li4–xNaxTi5O12 and Li4–xNaxTi5O12/graphene composites as anode materials for lithium-ion batteries[J]. MATEC Web of Conferences, 2016, 65:02008.
[14] LI X Y. Study on preparation and Doping Modification of Lithium Titanate(Dissertation, in Chinese). Guizhou:Guizhou University,2019.
[15] ARIYOSHI K, OHZUKU T. Conceptual design for 12 V “lead-free”accumulators for automobile and stationary applications[J]. J Power Sources, 2007, 174(2):1258–1262.
[16]王鸣,黄俊涛,程丽丽,等.锂离子电池负极材料Li4Ti5O12合成与改性的研究进展[J].功能材料, 2020(3):03047.WANG M, HUANG J T, CHENG L L, et al. Funct Mater(in Chinese),2020(3):03047.
[17] YU Q, HUANG H, CHEN R, et al. Synthesis of CuO nano walnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties[J]. Nanoscale, 2012, 4(8):2613–2620.
[18] BABU B V, BABU K V, AREGAI G T, et al. Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries[J].Results Phys, 2018(9):284–289.
[19] LI Y, ZHAO H L, TIAN Z H, et al. Heat treatment effect on electrochemical properties of spinel Li4Ti5O12[J]. Rare Metals, 2008,27(2):165–169.
[20] WANG M, ZHANG X M, WANG Y B, et al. Preparation and Electrochemical Performance of Mg2+Doped Li4Ti5O12 Anode Materials for Lithium-Ion Batteries[J]. Mater Sci Forum, 2019, 960:238–243.
[21] CHEN C, ZHANG X, ZHOU Y, et al. Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method[J]. Mater Chem Phys,2002, 78(2):437–441.
[22] HAO Y J, LAI Q Y, LIU D Q, et al. Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J]. Mater Chem Phys, 2005, 94(2/3):382–387.
[23] SHEN L F, YUAN C Z, LUO H J, et al. Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries[J]. J Mater Chem, 2010, 20(33):6998–7004.
[24] TANG Y F, YANG L, FANG S H, et al. Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries[J]. Electrochim Acta, 2009, 54(26):6244–6249.
[25] WANG M, HUANG J T, CHENG L L, et al. Preparation and Electrochemical Performance of Li4Ti5O12@C Composites for Negative Electrode of Lithium-ion Battery[J]. Mater Reports(in Chinese), 2020, 34:01019.
[26] LI F Y, MIN Z, JING L, et al. Preparation and electrochemical performance of Mg-doped Li4Ti5O12 nanoparticles as anode materials for lithium-ion batteries[J]. Int J Electrochem Sci, 2015, 10(12):445–453.
[27] KANG E, JUNG Y S, KIM G H, et al. Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method[J]. Adv Funct Mater, 2011, 21:4349–4357.
[28] XIA X, ZHAN J, ZHONG Y, et al. Single-crystalline, metallic TiC nanowires for highly robust and wide-temperature electrochemical energy storage[J]. Small, 2017, 13:6810–6829.
[29] WANG M H, ISLAM S, SONG J, et al. Carbon-coated rhombohedral Li2NaV2(PO4)3, nanoflake cathode for Li-ion battery with excellent cycle ability and rate capability[J]. Chem Phys Lett, 2017, 681:44–49.
[30] BOUKAMP B A, LESH G C, HUGGINS R A. Chem inform abstract:all-soled lithium electrodes with mixed-conductor matrix[J]. Chem Inform Sdienst, 1981, 128(4):125–129.
[31] CHENG X L, LI H J, LIU H M. Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation[J]. J Electrochem Soc, 2007,154:A692–A697.
[32] NUGROHO A, KIM S J, CHUNG K Y, et al. Synthesis of Li4Ti5O12 in supercritical water for Li-ion batteries:reaction mechanism and high-rate performance[J]. Electrochim Acta, 2012, 78:623?632.
基本信息:
DOI:10.14062/j.issn.0454-5648.20210753
中图分类号:TM912;TB332
引用信息:
[1]王鸣,方鹏飞,都亮等.锂离子电池负极用多孔碳包覆Li_4Ti_5O_(12)复合材料的制备及电化学性能[J].硅酸盐学报,2022,50(02):364-371.DOI:10.14062/j.issn.0454-5648.20210753.
基金信息:
国家自然科学基金项目(51874167,51774175); 辽宁省教育厅科学研究面上项目(LJKZ0363); 辽宁工程技术大学学科创新团队项目(LNTU20TD-09,LNTU20TD-16)