西安建筑科技大学材料科学与工程学院;南京工业大学材料科学与工程学院;陕西富平生态水泥有限公司;陕西建材科技集团股份有限公司;
熔融还原过程中水淬残渣物相组成变化规律是钢渣熔融还原基础问题之一。研究了不同CaO掺量对煤矸石中残碳为碳源还原钢渣的还原率、回收率以及残渣的组成和微观结构变化。结果表明:体系碱度系数K为1.33时(外掺10%(质量分数)左右的CaO),铁的还原率和回收率最高,均可达97%。随着K值增加,还原率和回收率均降低。1500℃熔融还原的残渣,随着K值增加残渣中的β-C_2S和C_3S等物相含量逐渐增加。在碱度系数大于1.6时体系中出现方镁石,且方镁石主要出现于C_3S形成的区域。C_3S的大量形成导致基体中Al_2O_3浓度相对增加,从而形成了C_3A。
213 | 0 | 5 |
下载次数 | 被引频次 | 阅读次数 |
[1]王强,黎梦圆,石梦晓.水泥-钢渣-矿渣复合胶凝材料的水化特性[J].硅酸盐学报, 2014, 42(5):629–634.WANG Qiang, LI Mengyuan, SHI Mengxiao. J Chin Ceram Soc, 2014,42(5):629–634.
[2]赵德强,沈卫国,王桂明,等.不同种类转炉钢渣对高铁分相熟料烧成与性能的影响[J].硅酸盐学报, 2023, 51(8):1885–1897.ZHAO Deqiang, SHEN Weiguo, WANG Guimin, et al. J Chin Ceram Soc, 2023, 51(08):1885–1897.
[3]殷素红,郭辉,余其俊,等.还原铁法重构钢渣及其矿物组成[J].硅酸盐学报, 2013, 41(7):966–971.YIN Suhong, GUO Hui, YU Qijun, et al. J Chin Ceram Soc, 2013,41(7):966–971.
[4] LEE J, AN S B, SHIN M, et al. Valorization of electrical arc furnace oxidizing slag[C]//Celebrating the Megascale:Proceedings of the Extraction and Processing Division Symposium on Pyrometallurgy in Honor of David GC Robertson, 2016:347–355.
[5] GUO H, YIN S H, YU Q J, et al. Iron recovery and active residue production from basic oxygen furnace(BOF)slag for supplementary cementitious materials[J]. Resour Conserv Recycl, 2018, 129:209–218.
[6] LIU C W, HUANG S G, WOLLANTS P, et al. Valorization of BOF steel slag by reduction and phase modification:Metal recovery and slag valorization[J]. Metall Mater Trans B, 2017, 48(3):1602–1612.
[7] LINDVALL M, YE G. Experiences of using various metallurgical reactors for reduction of vanadium bearing steel slags and other wastes[C]//International Smelting Technology Symposium:Incorporating the6th Advances in Sulfide Smelting Symposium, 2012:147-154.
[8] LYU B B, WANG G, ZHAO L D, et al. Effect of atmosphere and basicity on softening–melting behavior of primary slag formation in cohesive zone[J]. J Iron Steel Res Int, 2023, 30(2):227–235.
[9] MORITA K, GUO M X, OKA N, et al. Resurrection of the iron and phosphorus resource in steel-making slag[J]. J Mater Cycles Waste Manag, 2002, 4(2):93–101.
[10]郭辉.转炉钢渣中铁的还原回收及制备高胶凝性水淬渣的方法研究[D].广州:华南理工大学, 2018.GUO Hui. Study on reduction and recovery of iron from converter steel slag and preparation of high gelling water-quenched slag[D].Guangzhou:South China University of Technology, 2018.
[11]杨曜.钢渣中FeOx还原反应热力学、Fe还原回收效果及余渣性能的研究[D].广州:华南理工大学, 2013.YANG Yao. Study on thermodynamics of FeOx reduction reaction in steel slag, recovery effect of Fe reduction and properties of residual slag[D].Guangzhou:South China University of Technology, 2013.
[12] MIN D J, HAN J W, CHUNG W S. A study of the reduction rate of FeO in slag by solid carbon[J]. Metall Mater Trans B, 1999, 30(2):215–221.
[13] PARAMGURU R K, GALGALI R K, RAY H S. Influence of slag and foam characteristics on reduction of FeO-containing slags by solid carbon[J]. Metall Mater Trans B, 1997, 28(5):805–810.
[14] SARMA B, CRAMB A W, FRUEHAN R J. Reduction of FeO in smelting slags by solid carbon:Experimental results[J]. Metall Mater Trans B, 1996, 27(5):717–730.
[15]宋强,聂娇,宋甜甜,等.温度对煤矸石还原钢渣铁氧化物制备的水淬渣活性的影响[J].硅酸盐学报, 2024, 52(2):522–532.SONG Qiang, NIE Jiao, SONG Tiantian, et al. J Chin Ceram Soc, 2024,52(2):522–532.
[16] LI Z B, ZHAO S Y, ZHAO X G, et al. Cementitious property modification of basic oxygen furnace steel slag[J]. Constr Build Mater,2013, 48:575–579.
[17] LE SAO?T G, KOCABA V, SCRIVENER K. Application of the Rietveld method to the analysis of anhydrous cement[J]. Cem Concr Res, 2011, 41(2):133–148.
[18] CHEN Z M, LI R, ZHENG X M, et al. Carbon sequestration of steel slag and carbonation for activating RO phase[J]. Cem Concr Res, 2021,139:106271.
[19]王彬,任雪红,张文生.以不同磷酸钙盐形式引入P5+掺杂对阿利特结构及活性的影响[J].硅酸盐学报, 2013, 41(5):644–649.WANG Bin, REN Xuehong, ZHANG Wensheng. J Chin Ceram Soc,2013, 41(5):644–649.
[20]任雪红,张文生,叶家元,等.氧化铁掺杂对阿利特结构及活性的影响[J].硅酸盐学报, 2015, 43(8):1120–1128.REN Xuehong, ZHANG Wensheng, YE Jiayuan, et al. J Chin Ceram Soc, 2015, 43(8):1120–1128.
[21] SITARZ M. The structure of simple silicate glasses in the light of Middle Infrared spectroscopy studies[J]. J Non Cryst Solids, 2011,357(6):1603–1608.
[22] MOLLAH M Y A, YU W H, SCHENNACH R, et al. A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate[J]. Cem Concr Res, 2000, 30(2):267–273.
[23] YLMéN R, J?GLID U, STEENARI B M, et al. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques[J]. Cem Concr Res, 2009, 39(5):433–439.
[24] MA H Y, TIAN Y, LI Z J. Interactions between organic and inorganic phases in PA-and PU/PA-modified-cement-based materials[J]. J Mater Civ Eng, 2011, 23(10):1412–1421.
[25] ROMANO J S, RODRIGUES F A. Titanium-bearing dicalcium silicates from rice hull ash:Synthesis and properties[J]. J Am Ceram Soc, 2007, 90(7):2259–2261.
[26] MOUDAR J, AGOURRAME H, EL FAMI N, et al. Stabilization and characterization of dicalcium silicate belite phase by metallic zinc[J].Mater Today Proc, 2022, 58:1442–1446.
[27] TIMóN V, TORRENS-MARTIN D, FERNáNDEZ-CARRASCO L J,et al. Infrared and Raman vibrational modelling of β-C2S and C3S compounds[J]. Cem Concr Res, 2023, 169:107162.
[28] XIE L, LUO D P, ZHU Y G, et al. Luminescence and mineralization properties of Gd3+stabilized β-dicalcium silicate[J]. Phys B Condens Matter, 2021, 610:412625.
[29] REN X H, ZHANG W S, YE J Y. FTIR study on the polymorphic structure of tricalcium silicate[J]. Cem Concr Res, 2017, 99:129–136.
[30] ZHOU H, XING Y J, ZHOU M X. Effects of modified Kaolin adsorbents on sodium adsorption efficiency and ash fusion characteristics during Zhundong coal combustion[J]. J Energy Inst, 2021, 97:203–212.
[31] RAJKOHILA A, PRAKASH CHANDAR S, RAVICHANDRAN P T.Assessing the effect of natural fiber on mechanical properties and microstructural characteristics of high strength concrete[J]. Ain Shams Eng J, 2024, 15(5):102666.
[32] CHARGUI F, HAMIDOUCHE M, BELHOUCHET H, et al. Mullite fabrication from natural Kaolin and aluminium slag[J]. Boletín De La Soc Espa?ola De Cerámica Y Vidrio, 2018, 57(4):169–177.
[33] AMAR M, LADDURI B, ALLOUL A, et al. Microstructure and mechanical properties of geopolymers utilizing excavated soils,metakaolin and slags[J]. J Build Eng, 2024, 86:108755.
[34] WANG Y W, LIU S F, HUANG P F, et al. Structural and magnetic properties of mono-dispersed iron carbide(FexCy)nanoparticles synthesized by facile gas phase reaction[J]. Ceram Int, 2019, 45(8):11119–11124.
[35] KANTRO D L, WEISE C H. Hydration of various beta-dicalcium silicate preparations[J]. J Am Ceram Soc, 1979, 62(11/12):621–626.
[36] FUJII K, KONDO W. Rate and mechanism of hydration of β-dicalcium silicate[J]. J Am Ceram Soc, 1979, 62(3/4):161–167.
[37] ZHANG W S, ZHANG J T, YE J Y, et al. Hydration kinetics and microstructure development of normal and NaAlO2-activated Al-dopedβ-C2S pastes[J]. J Am Ceram Soc, 2022, 105(3):2221–2233.
基本信息:
DOI:10.14062/j.issn.0454-5648.20240574
中图分类号:TQ172.1
引用信息:
[1]宋强,宋甜甜,聂娇等.氧化钙掺量对钢渣熔融还原水淬残渣中熟料矿物形成的影响[J].硅酸盐学报,2025,53(05):1121-1132.DOI:10.14062/j.issn.0454-5648.20240574.
基金信息:
陕西省科学技术研究计划(2024GX-YBXM-401,2024GXYBXM-370); 陕西省教育厅重点研发计划(20JY040)