869 | 11 | 18 |
下载次数 | 被引频次 | 阅读次数 |
通过调控前驱体三聚氰胺和尿素比例采用热聚合法得到一系列厚度可控的石墨相氮化碳(g-C3N4)纳米片。采用X射线粉末衍射、扫描电镜、原子力显微镜、比表面积测试、紫外可见光谱和荧光光谱等手段对纳米片的结构和性能进行了表征,并探讨了其光催化降解罗丹明B(Rh B)的性能。结果表明:当三聚氰胺和尿素比例为1:8时g-C3N4最薄(1:8-CN),厚度仅为3.518 nm,同时1:8-CN的比表面积是以三聚氰胺为原料制备的g-C3N4(M-CN)的7倍。光电学分析表明,1:8-CN具有更高的光生载流子分离效率。在可见光照射下,1:8-CN对Rh B的光催化降解率可以达到96.2%,是M-CN的1.9倍。1:8-CN光催化降解Rh B的反应机理表现为:光生电子–空穴对分离产生的电子与O2结合生成·O2~–,·O2~–将Rh B氧化生成CO2和H2O,空穴几乎不参与反应。
Abstract:A series of graphitic carbon nitride(g-C3N4) nanosheets with controllable thicknesses were prepared by a thermal polymerization method with different ratios of precursor melamine and urea. The nanosheets were characterized by X-ray diffraction,scanning electron microscopy, atomic force microscopy, specific surface area measurement, ultraviolet–visible spectroscopy and photoluminescence, respectively, which were used for the photocatalytic degradation of Rhodamine B(RhB). The results show that g-C3N4 is the thinnest(1:8-CN) with the thickness of 3.5 nm when the ratio of melamine to urea is 1:8. Its specific surface area is 6 times greater than that of g-C3N4 prepared using only melamine(assigned as M-CN). The photoelectric analysis indicates that 1:8-CN has a higher separation efficiency of photogenerated carriers. Under the visible-light, the photocatalytic degradation rate of RhB by 1:8-CN can reach 96.2%, which is 1.9 times greater than that of M-CN. Besides, the photocatalytic degradation mechanism of 1:8-CN toward RhB is since the electrons generated by the separation of photogenerated electron-hole pairs combine with O2 to generate ·O2~–, and then·O2~– oxidizes RhB into CO2 and H2 O, and the holes do hardly participate in the reaction.
[1]LIANG X,WANG G,DONG X,et al.Graphitic Carbon Nitride with Carbon Vacancies for Photocatalytic Degradation of Bisphenol A[J].Acs Appl Nano Mater,2019,2(1):517-524.
[2]DAI K,PENG T,CHEN H,et al.Photocatalytic Degradation of Commercial Phoxim over La-Doped Ti O2 Nanoparticles in Aqueous Suspension[J].Environ Sci Technol,2009,43(5):1540-1545.
[3]SHEN A Z,ZHANG Q L,YIN C C,et al.Facile synthesis of 3Dflower-like mesoporous Ce-Zn O at room temperature for the sunlight-driven photocatalytic degradations of Rh B and phenol[J].JColloid Interface Sci,2019,556:726-733.
[4]SHI J,CHEN T,GUO C,et al.The bifunctional composites of ACrestrain the stack of g-C3N4 with the excellent adsorptionphotocatalytic performance for the removal of Rh B[J].Colloids and Surfaces A:Physicochem Eng Aspects,2019,580:123701-123711.
[5]GUO Y,LI C,GUO Y,et al.Ultrasonic-assisted synthesis of mesoporous g-C3N4/Na-bentonite composites and its application for efficient photocatalytic simultaneous removal of Cr(VI) and Rh B[J].Colloids and Surfaces A:Physicochem Eng Aspects,2019,578:123624-123633.
[6]BENJAMIN S,VAYA D,PUNJABI P B,et al.Enhancing photocatalytic activity of zinc oxide by coating with some natural pigments[J].Arab J Chem,2011,4(2):205-209.
[7]FUJISHIMA A,HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-38.
[8]ZHANG Q,LI Y,ACKERMAN E A,et al.Visible light responsive iodine-doped Ti O2 for photocatalytic reduction of CO2 to fuels[J].Appl Catal A General,2011,400(1/2):195-202.
[9]KUMAR S,ISAACS M A,TROFIMOVAITE R,et al.P25@Co Al layered double hydroxide heterojunction nanocomposites for CO2photocatalytic reduction[J].Appl Catal B Environ,2017,209(1):394.
[10]FAN H,JIANG T,LI H,et al.Effect of Bi VO4 Crystalline Phases on the photoinduced carriers behavior and photocatalytic activity[J].JPhys Chem C,2012,116(3):2425-2430.
[11]KUNDU S,CISTON J,SENANAYAKE S D,et al.Exploring the structural and electronic properties of Pt/Ceria-Modified Ti O2 and Its photocatalytic activity for water splitting under visible light[J].J Phys Chem C,2012,116(26):14062-14070.
[12]WANG X,MAEDA K,THOMAS A,et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nat Mater,2009,8(1):76-80.
[13]WEE-JUN O,LLING-LLING D,YUN HAU N,et al.Graphitic carbon nitride (g-C3N4)-Based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability?[J].Chem Rev,2016,116(12):7159-7329.
[14]ZHANG J H,WEI M J,WEI Z W,et al.Ultrathin graphitic carbon nitride nanosheets for photocatalytic hydrogen evolution[J].ACS Appl Nano Mater,2020,3(2):1010-1018.
[15]ZHU M S,SU M J,YAN B,et al.Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation[J].Appl Catal B Environ,2017,203:108-115.
[16]LIN Q Y,LI L,LIANG S J,et al.Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities[J].Appl Catal B Environ,2015,163:135-142.
[17]SUN X Q,LEI J,JIN Y,et al.Long-Lasting and intense chemiluminescence of luminol triggered by oxidized g-C3N4nanosheets[J].Anal Chem,2020,92(17):11860-11868.
[18]ISLAM A,ABDELHAFEEZ,CHEN J B,et al.Scalable one-step template-free synthesis of ultralight edge-functionalized g-C3N4nanosheets with enhanced visible light photocatalytic performance[J].Separat Purif Technol,2020,250:1383-5866.
[19]XU J,WANG Z P,ZHU Y F,et al.Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets[J].ACS Appl Mater Interf,2017,9(33):27727-27735.
[20]LI Y,WANG M,BAO S J,et al.Tuning and thermal exfoliation graphene-like carbon nitride nanosheets for superior photocatalytic activity[J].Ceram Inter,2016,42(16):18521-18528.
[21]YAN H,LI J,ZHANG M,et al.Enhanced corrosion resistance and adhesion of epoxy coating by two-dimensional graphite-like g-C3N4nanosheets[J].J Colloid Interf Ence,2020,579:152-161.
[22]XING W,TU W,HAN Z,et al.Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J].ACSEnergy Lett,2018,30:514-519.
[23]HAN Q,ZHAO F,HU C G,et al.Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting[J].Nano Res,2015(5):1718-1728.
[24]ZHOU Y,LV W,ZHU B,et al.Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution[J].ACS Sustain Chem Eng,2019,7(6):5801-5807.
[25]王震,任学昌,郭梅,等.g-C3N4的硫酸铵-尿素混合法制备及其可见光催化性能[J].环境化学,2020,39(10):267-276.WANG Zhen,REN Xuechang,GUO Mei,et al.Environ Chem (in Chinese),2020,39(10):267-276.
[26]阎鑫,惠小艳,闫从祥,等.类石墨相氮化碳二维纳米片的制备及可见光催化性能研究[J].材料导报,2017,31(9):77-80.YAN Xin,HUI Xiaoyan,Yan Congxiang,et al.Mater Guide (in Chinese),2017,31(9):77-80.
[27]CHEN Y,HUANG W,HE D,et al.Construction of heterostructured g-C3N4/Ag/Ti O2 microspheres with enhanced photocatalysis performance under visible-light irradiation[J].Acs Appl Mater Interf,2014,16(6):14405-14414.
[28]LIN D,YU C X,JUN B Z,et al.Ionic liquid-assisted preparation of thin Bi2Si O5 nanosheets for effective photocatalytic degradation of Rh B[J].Mater Lett,2020,261:127117-127127.
[29]MOUSAVI M,HABIBI-YANGJEH A,ABITORABI M.Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride,silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation[J].J Colloid Interf Sci,2016,480:218-231.
[30]KIM J,LEE C W,CHOI W.Platinized WO3 as an Environmental Photocatalyst that Generates OH Radicals under Visible Light[J].Environ Ence Technol,2010,44:6849-6854.
[31]ZENG J,LI J,ZHONG J,et al.Improved Sun light photocatalytic activity ofα-Fe2O3 prepared with the assistance of CTAB[J].Mater Lett,2015,160:526-528.
基本信息:
DOI:10.14062/j.issn.0454-5648.20210067
中图分类号:X703;O643.36;O644.1
引用信息:
[1]段飞阳,周安宁,陈福欣等.石墨相氮化碳纳米片的可控制备及光催化性能[J].硅酸盐学报,2021,49(10):2053-2060.DOI:10.14062/j.issn.0454-5648.20210067.
基金信息:
国家自然科学基金(51674194)