896 | 8 | 206 |
下载次数 | 被引频次 | 阅读次数 |
先驱体法连续碳化硅(Si C)纤维在航空、航天和核能领域具有广泛的应用前景。Si C纤维在高温氧化环境中的氧化行为对于复合材料的研究极为重要,本文概述了国内外先驱体法连续SiC纤维的研究现状,综述了SiC纤维的氧化类型、氧化过程、氧化动力学与性能退化机制的研究现状,提出了SiC纤维及其氧化行为研究的发展方向。
Abstract:Precursor continuous silicon carbide(SiC) fiber has a wide application prospect in the fields of aviation, aerospace and nuclear energy. The oxidation behavior and kinetics data of SiC fiber in a high-temperature oxidation environment are rather important for the research of composites. This review summarized the research work on continuous SiC fiber by a precursor method,oxidation type, performance degradation mechanism, oxidation process and oxidation kinetics of SiC fiber, and put forward the future research directions on oxidation behavior of SiC fiber.
[1]王应德,王军,宋永才,等.连续碳化硅纤维及陶瓷基复合材料[C]//中国空间科学学会第七次学术年会会议手册及文集. 2009:45.WANG Yingde, WANG Jun, SONG Yongcai, et al. Continuous silicon carbide fiber and ceramic matrix composites[C]//Conference Manual and Anthology of the Seventh Annual Academic Conference of Chinese society of space sciences(in Chinese), 2009:45.
[2]冯春祥,谭自烈.碳化硅纤维研究近况和发展动向[J].新型炭材料,1991(3):78?84.FENG Chunxiang, TAN Zilie. New Carbon Mater(in Chinese),1991(3):78?84.
[3]陈建军,彭志勤,董文钧,等.先驱体制备SiC纤维的发展历程与研究进展[J].高科技纤维与应用, 2010, 35(1):35?42.CHEN Jianjun, PENG Zhiqin, DONG Wenjun, et al. High Technol Fiber Appli(in Chinese), 2010, 35(1):35?42.
[4]张国庆,阮士峰.航空用连续SiC纤维增强Ti基复合材料制备的实验方法[J].信息记录材料, 2019, 20(9):39?40.ZHANG Guoqing, RUAN Shifeng. Information Record Mater(in Chinese), 2019, 20(9):39?40.
[5]石南林.新型空间结构材料-CVD法SiCf/Ti基复合材料[J].空间科学学报, 1996, S1:66?70.SHI Nanlin. J Space Sci(in Chinese), 1996, S1:66?70
[6] KATOA Y, SNEAD L, HENAGAR C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. J Nuclear Mater, 2014, 455(1/3):387?397.
[7] MURTHY P L, NEMETH N, BREWER D N. et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane[J].Compos Part B-English, 2008, 39(4):694?703.
[8] VERRILLI M J, MARTIN L C, BREWER D N. RQL Sector rig testing of SiC/SiC combustor liners[R]. NASA/TM-2002-211509, 2002:78?91.
[9] ELAM S, EFFMGER M, HOLMES R, et al. Lightweight chambers for thrust cell applications[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Alabama, 2000:1?10.
[10]冯祖德,何立志,王艳艳,等.聚碳硅烷SiC纤维的高温氧化行为研究进展[J].理化检验物理分册, 2005, 32(8):59?62.FENG Zude, HE Lizhi, WANG Yanyan, et al. Phys Chem Exam Phys Volume(in Chinese), 2005, 32(8):59?62.
[11] YAJIMA S, HAYASHI J, OMORI M. Continuous SiC fiber of high tensile strength[J]. Chem Lett, 1975, 4(9):931?934.
[12] YAJIMA S, HAYASHI J, OKAMURA K. Pyrolysis of a poly-borodiphenyl-siloxane[J]. Nature, 1977, 266(5602):521?522.
[13] YAJIMA S, OKAMURA K, MATSUZAWA T, et al. Anomalous characteristics of the microcrystalline state of SiC fibers[J]. Nature,1979, 279(5715):706?707.
[14] TAKEDA M, URANO A, SAKAMOTO J I. Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S[J]. J Nuclear Mater, 1998,(258/263):1594?1599.
[15] BUNSELL A R, PLANTA. A review of the development of three generations of small diameter silicon carbide fibers[J]. J Mater Sci,2006, 41(3):823?839.
[16] CLAUSS B, SCHAWALLER D. Modern aspects of ceramic fiber development[J]. Adv Sci Technol, 2006, 50(1):1?8.
[17]赵大方,王海哲,李效东.先驱体转化法制SiC纤维的研究进展[J].无机材料学报, 2009, 24(6):1097?1107.ZHAO Dafang, WANG Haizhe, LI Xiaodong. J Inorg Mater(in Chinese), 2009, 24(6):1097?1107
[18]张卫中,陆佳佳.连续SiC纤维制备技术进展及其应用[J].航空制造技术, 2012(18):105?108.ZHANG Weizhong, LU Jiajia. Aviat Manuf Technol(in Chinese),2012(18):105?108.
[19]田秀梅,马小民,张博.连续SiC纤维工程化制备技术研究[J].军民两用技术与产品, 2012(7):39?43.TIAN Xiumei, MA Xiaomin, ZHANG Bo. Dual Use Technol Prod(in Chinese), 2012(7):39?43.
[20] WANG P R, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. J Mater Sci Technol, 2019(35):2743?2750.
[21] ISHIKAWA T. Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature[J]. Compos Sci Technol, 1994, 51(2):135?144.
[22] ICHIKAWA H. Polymer-derived ceramic fibers[J]. Ann Rev Mater Res,2016(46):335–56.
[23] SHIMOO T, OKAMURA K, TSUKASA I, et al. Thermal stability of low-oxygen SiC fibers fired under different conditions[J]. J Mater Sci,1999, 34(22):5623?5631.
[24] SUGIMOTO M, SHIMOO T, OKAMURA. K, et al. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation:I, Evolved gas analysis[J]. J Am Ceram Soc, 1995, 78(8):1013?1017.
[25] TAKI T, OKAMURA K, SATO M, et al. A study on the electron irradiation curing mechanism of polycarbosilane fibers by solid-state29Si high-resolution nuclear magnetic resonance spectroscopy[J]. J Mater Sci, 1988, 7(3):209?211.
[26] MAO X H, SONG Y C, LI W, et al. Mechanism of curing process for polycarbonsilane fiber with cyclohexene vapor[J]. J Appl Polym Sci,2007, 105(3):1651?1657.
[27] XUE J G, WANG Y D, SONG Y C. Preparation of low oxygen SiC fiber by dry spinning[J]. J Inorg Mater, 2007, 22(4):681?684.
[28] TAKEDA M, IMAI Y, ICHIKAWA H, et al. Thermal stability of SiC fiber prepared by an irradiation-curing process[J]. Compos Sci Technol,1999, 59(6):793?799.
[29]王亦菲.连续碳化硅纤维高温性能及基于热交联的改进工艺研究[D].长沙:国防科学技术大学, 2004.WANG Yifei. Study on high temperature properties of continuous silicon carbide fiber and improved process based on thermal crosslinking(in Chinese, dissertation). Changsha:National University of Defense Technology, 2004.
[30] GUO C, SHEN Y. Effects of free carbon on microstructure of CVD SiC fiber[J]. Acta Metall Sin, 2007, 43(2):165?170.
[31]曹适意,王军,王浩,等.自由碳的脱除对SiC纤维微观结构和性能的影响[J].无机材料学报, 2016, 5(31):529?534.CAO Shiyi, WANG Jun, WANG Hao, et al. J Inorg Mater(in Chinese),2016, 5(31):529?534
[32] TAKEDA M, SASKIA A, SAKAMOTO J, et al. Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers[J]. J Am Ceram Soc, 2000, 83(5):1063?1069.
[33] LOOWIT Z J, RABE J A, Zang Vila, et al. Structure and properties of Sylramic silicon carbide fiber-a polycrystalline, stoichiometric β-SiC composition[M]. John Wiley Sons, Inc, US, 2008:132
[34] DICARLO J A, YUN H M. Methods for producing silicon carbide architectural preforms[P], US Patent, 7687016. 2010?03?30.
[35] CHU Z Y, FENG C X, SONG Y C, et al. Tensile strength evaluation of a polymer-derived multifilament continuous SiC fiber[C]//Mechanics and Material Engineering for Science and Experiments. Key Lab. of Ceramic Fibers&Composites, National University of Defense Technology, China, 2001:76.
[36] YUAN M, ZHOU T, HE J, et al. Formation of boron nitride coatings on silicon carbide fibers using trimethyl borate vapor[J]. Appl Surf Sci,2016, 382(30):27?33.
[37] XU X F, XIAO P, XIONG X, et al. Effects of Ni catalyzer on growth velocity and mor-phology of SiC nano-fibers[J]. J China Nonferrous Met Soc, 2009, 19(5):1146?1150.
[38]徐兆芳,陈元兰,李晓鸿,等.皮芯结构碳化硅陶瓷纤维的制备及性能[J].硅酸盐学报, 2019, 47(3):358?364.XU Zhaofang, CHEN Yuanlan, LI Xiaohong, et al. J Chin Ceram Soc,2019, 47(3):358?364
[39]黎阳,许云书. γ射线辐照不熔化法制备碳化硅纤维及其性能[J].硅酸盐学报, 2011, 39(11):1719?1723.LI Yang, XU Yunshu. J Chin Ceram Soc, 2011, 39(11):1719?1723
[40]马小民,冯春祥,田秀梅,等.国产连续碳化硅纤维的进展及应用[J].高科技纤维与应用, 2013, 38(5):47?50.MA Xiaomin, FENG Chunxiang, TIAN Xiumei, et al. High Technol Fiber Appl(in Chinese), 2013, 38(5):47?50
[41]曹适意. KD系列连续碳化硅纤维组成、结构与性能关系研究[D].长沙:国防科技大学, 2017.CAO Shiyi. Study on the relationship between composition, structure and properties of KD series continuous silicon carbide fibers(in Chinese, dissertation). Changsha:National University of Defense Technology, 2017.
[42]甘沅丰. KD-S纤维的微观组成结构调控及其高温蠕变性能研究[D].长沙:国防科技大学, 2018.GAN Yuanfeng. Study on microstructure regulation and high temperature creep properties of KD-S fiber(in Chinese, dissertation).Changsha:National University of Defense Technology, 2018.
[43]王堋人. SA型SiC纤维烧结致密化机理及高温性能研究[D].长沙:国防科技大学, 2020.WANG Pengren. Study on Sintering Densification Mechanism and high temperature properties of SA SiC fiber(in Chinese, dissertation).Changsha:National University of Defense Technology, 2020.
[44]李亮.碳化硅纤维高温氧化行为研究[D].长沙:国防科技大学,2016.LI Liang. Study on high temperature oxidation behavior of silicon carbide fiber(in Chinese, dissertation). Changsha:National University of Defense Technology, 2016.
[45] Q/LY 20001-2019, Cansas 3000系列连续碳化硅纤维[S].
[46] SHA J J, HIROKI T, KOYAMA A, et al. Microstructure and mechanical properties of Hi-Nicalon?Type S fibers annealed and crept in various oxygen partial pressures[J]. Mater Charact, 2009, 60(8):796?802.
[47] SHA J J, HIROKI T, KOYAMA A, et al. Thermal and mechanical stabilities of Hi-Nicalon SiC fiber under annealing and creep in various oxygen partial pressures[J]. Corros Sci, 2008(50):3132?3138.
[48] SHIMOO T, OKAMURA K, MORINAGA Y. Active-to-passive oxidation transition for polycarbosilane-derived silicon carbide fibers heated in Ar-O2 gas mixtures[J]. J Mater Sci, 2002, 37(9):1793?1800.
[49] MATHIEU Q, BISEMOUS G, FRANCIS R. et al. Oxidation of β-SiC at high temperature in Ar/O2, Ar/CO2, Ar/H2O gas mixtures:Active/passive transition[J]. J Eur Ceram Soc, 2018, 38(13):4320?4328.
[50] SHIMOO T, TAKEUCHI H, OKAMURA K. Thermal stability of polycarbosilane-derived silicon carbide fibers under reduced pressures[J]. J Am Ceram Soc, 2001, 3(84):566?570.
[51] HENLE A. Formation and structure of reaction layers in SiC/glass and SiC/SiC composites[J]. Compos Part A:Appl Sci Manuf, 1996, 27(9):685?690.
[52] HAY R S. SiC fiber strength after low pO2 oxidation[J]. J Am Ceram Soc, 2018, 101(2):831?844.
[53] CHARPENTIER L, BALAT-P M, ADALBERT F. High temperature oxidation of SiC under helium with low-pressure oxygen Part1:sintered-SiC[J]. J Eur Ceram Soc, 2010, 30(12):2653?2660.
[54]成溯,段刘阳,耿莉,等. C/SiC复合材料在超高温燃烧室环境下的烧蚀行为[J].硅酸盐学报, 2018, 46(12):1685?1693CHENG Shuo, DUAN Liuyang, GENG Li, et al. J Chin Ceram Soc,2018, 46(12):1685?1693
[55]赵光辉. Zr B2和SiC在高温和低氧压下氧化的原位研究[D].杭州:浙江大学, 2014.ZHAO Guanghui. In situ study on the oxidation of ZrB2 and SiC under high temperature and low oxygen pressure(in Chinese, dissertation).Hangzhou:Zhejiang University, 2014.
[56] ROY J, CHANDRA S, DAS S. Oxidation behaviors of silicon carbide a review[J]. Rev Adv Mater Sci, 2014, 38(3):29?39.
[57] WANG J, ZHANG L, ZENG Q, et al. The rate-limiting step in the thermal oxidation of silicon carbide[J]. Scripta Mater, 2010, 62(9):654?657.
[58] NATHAN, S, JACOBSON. Corrosion of silicon-based ceramics in combustion environments[J]. J Am Ceram Soc, 1993, 76(1):3?28.
[59] LIU C, XI J Q, IZABELA S. Sensitivity of SiC grain boundaries to oxidation[J]. J Appl Phys Chem C, 2019, 123(18):11546?11554.
[60] DEAL B E, GROVE A, SNOW E H, et al. Observation of impurity redistribution during thermal oxidation of silicon using the MOS structure[J]. J Electrochem Soc, 1965, 112(3):308.
[61] HIMMEL L, MEHUL R F, BIRCHEN C E. Self-diffusion of iron in iron oxides and the wagner theory of oxidation[J]. J Materiomics, 1953,5(6):827?843.
[62] OPILA E J. Oxidation kinetics of chemically vapor-deposited silicon carbide in wet oxygen[J]. J Am Ceram Soc, 1994, 77(3):730?736.
[63] NARASIMHA T, GOTO T, IGUCHI Y, et al. High-temperature oxidation of chemically vapor deposited silicon carbide in wet oxygen at 1 823 to 1 923K[J]. J Am Ceram Soc, 1990, 73(12):3580?3584.
[64] OPILA E J. Variation of the oxidation rate of silicon carbide with water-vapor pressure[J]. J Am Ceram Soc, 1999, 82(3):625?636.
[65] RAMBERG C E, WORRELL W L. Oxygen transport in silica at high temperature:Implications of oxidation kinetics[J]. J Am Ceram Soc,2001, 84(11):2607?2616.
[66] FILIPPOS L, NASRANI R. In Proceedings of 7th CIMTEC, Satellite Symposium 2(S2.1-L03)[C]//Montecatini, Terme-Italy, June 1990:35?51.
[67] SHIMOO T, HAYATOU T, TAKEDA M, et al. Mechanism of oxidation of low-oxygen SiC fiber prepared by electron radiation curing method[J]. J Ceram Soc Jpn, 1994, 102(1187):617?622.
[68] CHALON G, PAILLARD R, NASRANI R, et al. Thermal stability of a PCS-derived SiC fiber with a low oxygen content(Hi-Nicalon)[J]. J Mater Sci, 1997, 32(2):327?347
[69] SHIMOO T, TOYODA F, OKAMURA K. Effect of oxygen partial pressure on oxidation rate of Si-C-O fiber[J]. J Ceram Soc Jpn, 1998,106(1233):447.
[70] NASRANI R, GUETTA A, REBILLED F, et al. Oxidation mechanisms and kinetics of Si C-matrix composites and their constituents[J]. J Mater Sci, 2004, 39(24):7303?7316.
[71] CHALON G, CSIERNIK M, PAILLARD R, et al. A model SiC-based fiber with a low oxygen content prepared from a polycarbosilane precursor[J]. J Mater Sci, 1997, 32(4):893?911.
[72] WILSON M, OPILA E. A review of SiC fiber oxidation with a new study of Hi-Nicalon SiC fiber oxidation[J]. Adv Eng Mater, 2016,10(18):1698?1709.
[73] SHIMOO T, TOYODA F, OKAMURA K. Oxidation kinetics of low-oxygen silicon carbide fiber[J]. J Mater Sci, 2000, 35(13):3301?3306.
[74] HAY R S, CHATER R J. Oxidation kinetics strength of Hi-NicalonTM-S SiC fiber after oxidation in dry and wet air[J]. J Am Ceram Soc, 2017, 100(9):4110–4130.
[75] HAY R S, FAIR G E, BUFFEX R, et al. Hi-nicalonTM-S SiC fiber oxidation and scale crystallization kinetics[J]. J Am Ceram Soc, 2011,11(94):3983?3991.
[76] SHIMOO T, TAKEUCHI H, TAKEDA M, et al. Oxidation kinetics and mechanical property of stoichiometric SiC fibers(Hi-Nicalon-S)[J]. J Ceram Soc Jpn, 2010, 108(1264):1096?1102.
[77] MCFARLAND B, OPILA E J. Silicon carbide fiber oxidation behavior in the presence of boron nitride[J]. J Am Ceram Soc, 2018, 101(12):5534?5551.
[78] NARASIMHA T, GOTO T, HIRAI T. High-temperature passive oxidation of chemically vapor deposited silicon carbide[J]. J Am Ceram Soc, 1989, 72(8):1386?1390.
[79] COSTELLO J A, TESSLER R E. Oxidation kinetics of silicon carbide crystals and ceramics:I, in dry oxygen[J]. J Am Ceram Soc, 1986,69(9):674–681.
[80] CHEN X H, SUN Z G, HAN X, et al. Evolution of microstructure and tensile strength of Cansas-II SiC fibers under air oxidizing atmosphere[J]. J Eur Ceram Soc, 2021, 41(15):7585?7600
[81] HAY R S, FAIR G E, HART A, et al. Kinetics of passive oxidation of Hi-nicalon-S SiC fibers in wet air:Relationships between SiO2 scale thickness, crystallization, and fiber strength[M]. John Wiley&Sons,Ltd, 2012.
[82] TAKEDA M, URANUS A, SAKAMOTO J, et al. Microstructure and oxidation behavior of silicon carbide fibers derived from polycarbosilane[J]. J Am Ceram Soc, 2000, 5(83):1171?1176.
[83] WEN Q, YU Z, RIEDEL R. The fate and role of in situ formed carbon in polymer-derived ceramics[J]. Prog Mater Sci, 2020, 109:10063.
[84] ISHIKAWA T, KOTUKU Y, KOMAGATA K, et al. High-strength alkali-resistant sintered SiC fiber stable to 2 200℃[J]. Nature, 1998,391(6669):773?775.
[85] GOU Y Z, JIAN K, et al. Fabrication of nearly stoichiometric polycrystalline SiC fibers with excellent high-temperature stability up to 1 900℃[J]. J Am Ceram Soc, 2018, 101(5):15366.
[86] HUGER M, SOUTHARD S, GAULT C. Oxidation of Nicalon SiC fibers[J]. J Mater Sci Lett, 1993, 12(6):414?16.
[87] HAY R S, MOGILEVSKY P. Model for SiC fiber strength after oxidation in dry and wet air[J]. J Am Ceram Soc, 2019, 102(1):397–415.
[88] DEAL B E, GROVE A S. General relationship for the thermal of silicon[J]. J Appl Phys, 1965, 36(12):3770?2911.
[89]李亮,毛仙鹤,简科,等.低氧含量SiC纤维在模拟航空发动机环境中结构和性能[J].航空材料学报, 2018, 38(3):26?30.LI L, MAO X H, JIAN K, et al. J Aeronaut Mater(in Chinese), 2018,38(3):26?30.
[90] YAO R Q, FENG Z D, CHEN L, et al. Oxidation behavior of Hi-Nicalon SiC monofilament fibres in air and O2–H2O–Ar atmospheres[J]. Corros Sci, 2012, 57(4):182?191.
[91] MAZDAYASNA S. Fiber Reinforced Ceramic Composites:Materials,Processing, and Technology[M]. Noyes Publications, US, 1990.
[92] ZACHARY T, PETER K, NATHANIEL N, et al. Hi-NicalonTM-type S fiber tow surface desizing and decarburization via heat treatment[J].Ceram Int, 2021, 47(23):33709?33717.
[93]余煜玺,陈勇,吴晓云,等.用聚碳硅烷制备柔性疏水型碳化硅纤维毡[J].硅酸盐学报, 2014, 42(5):661?666.YU Yuxi, CHEN Yong, WU Xiaoyun, et al. J Chin Ceram Soc, 2014,42(5):661?666.
[94]午丽娟,沈国柱,徐政,等.掺铁氧体和SiC纤维水泥基复合材料的吸波性能[J].硅酸盐学报, 2007, 35(7):904?908.WU Lijuan, SHEN Guozhu, XU Zheng, et al. J Chin Ceram Soc, 2007,35(7):904?908.
[95]韦鑫,杨明杰,赵领航,等.高性能碳化硅纤维研究进展[J].棉纺织技术, 2018, 46(10):74?77WEI Xin, YANG Mingjie, ZHAO Linghang, et al. J Chin Ceram Soc,2018, 46(10):74?77
[96] Robertson S J, RUGGLES-WRENN M B, HAY R S, et al. Static fatigue of Hi-Nicalon?-S fiber at elevated temperature in air, steam,and silicic acid-saturated steam[J]. J Am Ceram Soc, 2020, 103(2):1358?1371.
[97] HAY R S, CORNS R. Passive oxidation kinetics for glass and cristobalite formation on Hi-Nicalon-S SiC fibers in steam[J]. J Am Ceram Soc, 2018, 101(11):5241?5256.
[98] BOAKYE E E, MOGILEVSKY P, KEY T S, et al. In situ Y2Si2O7coatings on Hi-Nicalon-S SiC fibers:Phase formation and fiber strength[J]. J Am Ceram Soc, 2019, 102(10):5725?5737.
[99] LI Y, CHEN M N, ZHANG Q Z, et al. Microstructure and corrosion behavior of in-situ grown Y3Si2C2 coated SiC fibers exposed to air and wet-oxygen at 1 400℃[J]. J Eur Ceram Soc, 2022, 42(3):3427?3436.
[100] AZARNOUSH S, RAJ R. Thin coatings of hafnon abate oxidative recession of SiC fibers[J]. J Am Ceram Soc, 2021, 104(3):1210–1215.
[101] WU B, NI N, FAN X, et al. Scheelite coatings on SiC fiber:Effect of coating temperature and atmosphere[J]. Ceram Int, 2021, 47(2):1693?1703.
基本信息:
DOI:10.14062/j.issn.0454-5648.20220255
中图分类号:TQ343.6
引用信息:
[1]王永寿,王小宙,王应德.先驱体法连续碳化硅纤维及其氧化行为研究进展[J].硅酸盐学报,2022,50(11):3081-3090.DOI:10.14062/j.issn.0454-5648.20220255.
基金信息:
国家自然科学基金(51872329); 基础加强计划重点基础研究项目(2019-JCJQ-ZD-XX)