nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2024 12 v.52 3856-3867
高能射线探测用高密度玻璃闪烁体研究进展
基金项目(Foundation): 国家杰出青年科学基金(62125502)
邮箱(Email): ;;
DOI: 10.14062/j.issn.0454-5648.20240379
中文作者单位:

华南理工大学材料科学与工程学院发光材料与器件国家重点实验室;

摘要(Abstract):

玻璃闪烁体作为探测高能射线常见的闪烁体材料之一,在核医学成像、工业无损探伤、高能核物理、安全检查、环境监测等领域有着广泛应用。闪烁玻璃的密度越高,对射线和粒子的吸收拦截能力越强,有利于提高探测器的探测效率。本文从闪烁玻璃的闪烁机理和基质材料选择出发,总结介绍了Ce3+、Tb3+、Eu3+等稀土离子掺杂的高密度闪烁玻璃的最新研究进展,重点关注闪烁玻璃的密度、衰减时间、光输出和耐辐照等特性,并对高密度闪烁玻璃的未来发展做出了展望。

关键词(KeyWords): 高密度;玻璃;闪烁体;稀土离子;辐射探测
参考文献

[1]李鑫,张健,罗思媛,等.用于X射线成像的铽离子掺杂硅酸盐微晶玻璃[J].硅酸盐学报, 2024, 52(8):2502–2508.LI Xin, ZHANG Jian, LUO Siyuan, et al. J Chin Ceram Soc, 2024,52(8):2502–2508.

[2] YANAGIDA T. Inorganic scintillating materials and scintillation detectors[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2018, 94(2):75–97.

[3]朱丹阳,蔡金伶, BEITLEROVA Alena,等. Ce掺杂浓度对Ce,Ca:Lu3Al5O12陶瓷闪烁性能的影响[J].硅酸盐学报, 2024, 52(3):755–764.ZHU Danyang, CAI Jinling, BEITLEROVA Alena, et al. J Chin Ceram Soc, 2024, 52(3):755–764.

[4] FUJITA T, KATAOKA J, KISHIMOTO A, et al. Development of prototype PET scanner using dual-sided readout DOI-PET modules[J].J Inst, 2014, 9(12):P12015.

[5] GLODO J, WANG Y M, SHAWGO R, et al. New developments in scintillators for security applications[C]//24th international conference on the application of accelerators in research and industry(CAARI).Fort Worth, TX. 2016:285–290.

[6] IDOETA R, HERRANZ M, ALEGRíA N, et al. Possibilities of the use of CeBr3 scintillation detectors for the measurement of the content of radionuclides in samples for environmental monitoring[J]. Appl Radiat Isot, 2021, 176:109881.

[7] LIN Z Y, LV S C, YANG Z M, et al. Structured scintillators for efficient radiation detection[J]. Adv Sci, 2022, 9(2):e2102439.

[8]孙志成,冯桂青,王帅华,等.铕掺杂Gd2Zr2O7透明陶瓷的制备及闪烁性能[J].硅酸盐学报, 2024, 52(3):746–754.SUN Zhicheng, FENG Guiqing, WANG Shuaihua, et al. J Chin Ceram Soc, 2024, 52(3):746–754.

[9]杜永笑,罗朝华,孙靖涵,等.热水浴还原法制备Gd2O2S:Pr闪烁陶瓷及性能优化[J].硅酸盐学报, 2024, 52(3):812–819.DU Yongxiao, LUO Chaohua, SUN Jinghan, et al. J Chin Ceram Soc,2024, 52(3):812–819.

[10] MCGREGOR D S. Materials for gamma-ray spectrometers:Inorganic scintillators[J]. Annu Rev Mater Res, 2018, 48:245–277.

[11] MOSZY?SKI M. Inorganic scintillation detectors in γ-ray spectrometry[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2003, 505(1–2):101–110.

[12]陈宇洋,毕愿,朱丹阳,等.不同掺杂量EuxLu1.4–xGd0.6O3透明陶瓷的制备与性能[J].硅酸盐学报, 2024, 52(3):828–835.CHEN Yuyang, BI Yuan, ZHU Danyang, et al. J Chin Ceram Soc, 2024,52(3):828–835.

[13] HU P, WANG Y, DU D, et al. GSHCAL at future e+e-Higgs factories[J].Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Dect Assoc Equip, 2024, doi:1059:168944.

[14]吕时超,周时凤,唐俊州,等.玻璃闪烁体的研究进展[J].光子学报,2019, 48(11):1148011.LV Shichao, ZHOU Shifeng, TANG Junzhou, et al. Acta Photon Sin,2019, 48(11):1148011.

[15] TANG G, HUA Z H, QIAN S, et al. Optical and scintillation properties of aluminoborosilicate glass[J]. Opt Mater, 2022, 130:112585.

[16] VAN KIRK S E, MARTIN S W. Preparation and characterization of high-density PbO-Bi2O3-B2O3 glasses[J]. J Am Ceram Soc, 1992, 75(4):1028–1031.

[17]王其良,唐膺,丁子上. PbO–Bi2O3–B2O3–SiO2系重金属氧化物玻璃的结构与光学性[J].无机材料学报, 1996, 11(2):219–224.WANG Qiliang, TANG Ying, DING Zishang. J Inorg Mater, 1996,11(2):219–224.

[18]陈国荣,杜永娟.新型高密度闪烁玻璃研究进展[J].硅酸盐通报,2000,(5):48–51.CHEN Guorong, DU Yongjuan. Bull Chin Ceramic Soc(in Chinese),2000,(5):48–51.

[19] HE M, ZHANG Z H, CHEN X L, et al. Luminescence mechanism study of a potential scintillation crystal YBa3B9O18[J]. Int J Mod Phys B, 2011, 25(12):1637–1644.

[20] ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors[J]. ACS Energy Lett, 2021,6(2):739–768.

[21] YANAGIDA T. Study of rare-earth-doped scintillators[J]. Opt Mater,2013, 35(11):1987–1992.

[22] TATSUMISAGO M, MINAMI T, TANAKA M. Rapid quenching technique using thermal-image furnace for glass preparation[J]. J Am Ceram Soc, 1981, 64(7):97–98.

[23] NAKAUCHI D, OKADA G, KAWAGUCHI N, et al. Scintillation properties of RE2Hf2O7(RE=La, Gd, Lu)single crystals prepared by xenon arc floating zone furnace[J]. Jpn J Appl Phys, 2018, 57(10):100307.

[24] SHIRATORI D, NAKAUCHI D, FUKUSHIMA H, et al.Photoluminescence and scintillation properties of Ce-doped Barium silicate glasses synthesized by the FZ method[J]. Opt Mater, 2020, 105:109895.

[25] SHEA J J. Smithells metal reference book, 8th ed[J]. IEEE Electr Insul Mag, 2005, 21(2):56.

[26] BENMORE C J, WEBER J K R. Aerodynamic levitation, supercooled liquids and glass formation[J]. Adv Phys X, 2017, 2(3):717–736.

[27] ZAMAN F, ROOH G, SRISITTIPOKAKUN N, et al. Scintillation and luminescence characteristics of Ce3+doped in Li2O–Gd2O3–BaO–B2O3scintillating glasses[J]. Radiat Phys Chem, 2017, 130:158–163.

[28] LI L, SHAN Q, JIA W, et al. Optimization of the CEPC-AHCAL scintillator detector cells[J]. J Inst, 2021, 16(3):P03001.

[29]华哲浩,隋泽萱,钱森,等. Ce3+掺杂闪烁玻璃的研究进展[J].光电工程, 2023, 50(5):220247.HUA Zhehao, SUI Zexuan, QIAN Sen, et al. Opto Electron Eng, 2023,50(5):220247.

[30]姜淳.高发射截面掺镱激光玻璃和高密度掺铈玻璃闪烁体的研究[D].上海:中国科学院上海光学精密机械研究所, 1999.JIANG Chun. Study on high emission cross-section Yb-doped laser glass and high density Ce-doped glass scintillator[D].Shanghai:Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 1999.

[31] SUN X Y, GAO P, WU S, et al. Luminescent properties and energy transfer of Ce3+-activated Li2O–B2O3–Gd2O3 scintillating glasses under VUV–UV and X-ray excitation[J]. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater At, 2015, 350:36–40.

[32] NOVOTNY R W, BRINKMANN K T, BORISEVICH A, et al. Study of the new glass and glass ceramic stoichiometric and Gd3+-loaded Ba O*2SiO2(DSB:Ce)scintillation material for future calorimetry[C]//17th international conference on calorimetry in particle physics(CALOR). Daegu, SOUTH KOREA. 2016:012034.

[33] NOVOTNY R W, BRINKMANN K T, DORMENEV V, et al.Performance of DSB–a new glass and glass ceramic as scintillation material for future calorimetry[J]. J Phys:Conf Ser, 2019, 1162:012023.

[34] NOVOTNY R W, BRINKMANN K T, BORISEVICH A, et al. Study of the new glass and glass ceramic stoichiometric and Gd3+-loaded Ba O*2SiO2(DSB:Ce)scintillation material for future calorimetry[J]. J Phys:Conf Ser, 2017, 928:012034.

[35] AUFFRAY E, AKCHURIN N, BENAGLIA A, et al. DSB:Ce3+scintillation glass for future[J]. J Phys:Conf Ser, 2015, 587:012062.

[36] WANG Q, YANG B, ZHANG Y P, et al. High light yield Ce3+-doped dense scintillating glasses[J]. J Alloys Compd, 2013, 581:801–804.

[37] LIU L W, ZHOU Q L, SHAO C Y, et al. Scintillation properties of Ce3+doped SiO2–Al2O3–Gd2O3 glass[J]. Acta Phys Sin, 2015, 64(16):167802.

[38] RAJARAMAKRISHNA R, KAEWJAENG S, KAEWKHAO J, et al.Investigation of XANES study and energy transport phenomenon of Gd3+to Ce3+in Ca O–SiO2–B2O3 glasses[J]. Opt Mater, 2020, 102:109826.

[39] LIU L W, SHAO C Y, ZHANG Y, et al. Scintillation properties and X-ray irradiation hardness of Ce3+-doped Gd2O3-based scintillation glass[J]. J Lumin, 2016, 176:1–5.

[40] LERTLOYPANYACHAI P, PATTANABOONMEE N, CHEWPRADITKUL W, et al. Luminescence and scintillation response of Ce3+-doped oxide glasses with high Gd2O3 content[J]. Key Eng Mater, 2016, 675–676:434–437.

[41] BOSZE E J, HIRATA G A, SHEA-ROHWER L E, et al. Improving the efficiency of a blue-emitting phosphor by an energy transfer from Gd3+to Ce3+[J]. J Lumin, 2003, 104(1–2):47–54.

[42] YAO Y X, LIU L W, ZHANG Y, et al. Optical properties of Ce3+doped fluorophosphates scintillation glasses[J]. Opt Mater, 2016, 51:94–97.

[43] DAFINEI I, AUFFRAY E, LECOQ P, et al. Heavy fluoride glasses as an alternative to crystals in high energy physics calorimetry[J]. MRS Online Proc Libr, 1994, 348(1):217–221.

[44] ZOU W C, MARTIN S W, SCHWELLENBACH D, et al. New high-density fluoride glasses doped with CeF3[J]. J Non Cryst Solids,1995, 184:84–92.

[45] AUFFRAY E, BOUTTET D, DAFINEI I, et al. Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 1996, 380(3):524–536.

[46] SHAUKAT S F, MCKINLAY K J, FLOWER P S, et al. Optical and physical characteristics of HBLAN fluoride glasses containing cerium[J]. J Non Cryst Solids, 1999, 244(2–3):197–204.

[47] ITO G, KIMURA H, SHIRATORI D, et al. Optical and scintillation properties of Ce-doped 20CsCl–20BaCl2–60ZnCl2 glasses[J]. Optik,2021, 226:165825.

[48] STRUEBING C, BECKERT M B, NADLER J H, et al. Optimization of a gadolinium-rich oxyhalide glass scintillator for gamma ray spectroscopy[J]. J Am Ceram Soc, 2018, 101(3):1116–1121.

[49] CHEWPRADITKUL W, PATTANABOONMEE N, YAWAI N, et al.Luminescence and scintillation properties of Ce3+-doped SiO2–Al2O3–BaF2–Gd2O3 glasses[J]. Opt Mater, 2019, 98:109468.

[50] LERTLOYPANYACHAI P, CHEWPRADITKUL W,PATTANABOONMEE N, et al. Luminescence and light yield of Ce3+-doped(60–x)SiO2–x Ba F2–20Al2O3–20Gd2O3 scintillation glasses:The effect of BaF2 admixture[J]. Optik, 2023, 289:171272.

[51] CHEWPRADITKUL W, HE X, CHEN D, et al. Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3concentration[J]. Phys Status Solidi A, 2011, 208(12):2830–2832.

[52] SUN X Y, LIU X J, XIAO Z H, et al. Enhancement of emission intensity in Ce3+-activated aluminoborosilicate scintillating glass synthesized in air[J]. J Am Ceram Soc, 2020, 103(2):768–772.

[53] SUN X Y, XIAO Z H, WU Y T, et al. Role of Al3+on tuning optical properties of Ce3+-activated borosilicate scintillating glasses prepared in air[J]. J Am Ceram Soc, 2018, 101(10):4480–4485.

[54] G?K?E M, BURGAZ G, G?K?E A G. Cerium doped glasses containing reducing agent for enhanced luminescence[J]. J Lumin, 2020,222:117175.

[55] SHIRATORI D, NAKAUCHI D, KATO T, et al. Radiation-induced scintillation properties of Ce-doped lutetium aluminosilicate glasses doped with cerium prepared by using a xenon image furnace[J]. J Non Cryst Solids, 2023, 607:122227.

[56]史振国.高密度和快衰减多组分闪烁玻璃及光纤的研究[D].广州:华南理工大学, 2021.SHI Zhenguo. Study on multi-component scintillation glass and optical fiber with high density and fast attenuation(in Chinese, dissertation).Guangzhou:South China University of Technology, 2021.

[57] LI W C, CHEN D P, HU L L, et al. Scintillation and photoluminescence performance of Ce3+-doped high gadolinium oxyfluoride glass for circular electron-positron collider(CEPC)[J]. Ceram Int, 2024, 50(11):19814–19821.

[58] JIANG C, ZENG Q J, GAN F X. Scintillation properties of cerium-doped germanate glass[C]//Conference on hard X-ray,gamma-ray, and neutron detector physics. SAN DIEGO, CA. 2000:309–315.

[59] SUN X Y, YE Z P, WU Y T, et al. A simple and highly efficient method for synthesis of Ce3+-activated borogermanate scintillating glasses in air[J]. J Am Ceram Soc, 2014, 97(11):3388–3391.

[60] JIANG C, ZHANG J Z, GAN F X. Scintillating luminescence of cerium-doped dense oxide glass[C]//Conference on hard X-ray,gamma-ray, and neutron detector physics. DENVER, CO. 1999:462–469.

[61] JIANG C, ZENG Q J, GAN F X. New scintillator:Cerium-doped dense oxide glass[C]//7th photonics for space environments conference(PSE VII). SAN DIEGO, CA. 2000:329–335.

[62] JIANG C, DENG P Z, ZHANG J Z, et al. Radioluminescence of Ce3+-doped B2O3–SiO2–Gd2O3–BaO glass[J]. Phys Lett A, 2004,323(3–4):323–328.

[63] SUN X Y, XIAO Z H, WU Y T, et al. Fast Ce3+-activated borosilicate glass scintillators prepared in air atmosphere[J]. Ceram Int, 2017, 43(3):3401–3404.

[64] BOONTUENG P, RITJOHO N, WANTANA N, et al. Fast scintillating Ce3+doped gadolinium aluminum fluoroborate glass for calorimetry in proton CT prototype:A preliminary work[J]. Radiat Meas, 2023, 163:106937.

[65] WU T, HUA Z H, TANG G, et al. Enhanced photoluminescence quantum yield of Ce3+-doped aluminum–silicate glasses for scintillation application[J]. J Am Ceram Soc, 2023, 106(1):476–487.

[66] ZHAO J T, HUANG L H, ZHAO S L, et al. Enhanced luminescence in Tb3+-doped germanate glass ceramic scintillators containing Ca F2nanocrystals[J]. J Am Ceram Soc, 2019, 102(4):1720–1725.

[67] FU J, KOBAYASHI M, PARKER J M. Terbium-activated heavy scintillating glasses[J]. J Lumin, 2008, 128(1):99–104.

[68] WU Y H, CHEN D Y, LI Y, et al. Scintillation properties of Ce3+/Tb3+Co-doped oxyfluoride aluminosilicate glass for exploration of X-ray imaging[J]. J Lumin, 2022, 245:118762.

[69] SUN X Y, JIANG D G, WANG W F, et al. Luminescence properties of B2O3–GeO2–Gd2O3 scintillating glass doped with rare-earth and transition-metal ions[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2013, 716:90–95.

[70] SUN X Y, YU X G, WANG W F, et al. Luminescent properties of Tb3+-activated B2O3–GeO2–Gd2O3 scintillating glasses[J]. J Non Cryst Solids, 2013, 379:127–130.

[71] SUN X Y, YANG Q M, GAO P, et al. Luminescence, energy transfer properties of Tb/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses[J]. J Lumin, 2015, 165:40–45.

[72] SUN X Y, YU X G, JIANG D G, et al. Spectroscopic and energy transfer properties of Dy3+-doped, Tb3+/Dy3+-codoped dense oxyfluoride borogermanate scintillating glasses[J]. J Appl Phys, 2016,119(23):233103.

[73] SUN X Y, WEN Z X, LIU X J, et al. Superdense Tb3+-activated borogermanate-tellurite scintillating glasses[J]. J Am Ceram Soc, 2019,102(3):896–900.

[74] SUN X Y, ZHOU M J, DENG C B, et al. Glass forming regions and concentration-dependent luminescence properties of Tb3+-activated tellurium-lutetium-tungsten glasses[J]. J Rare Earths, 2021, 39(2):146–150.

[75] HAN T T, SUN X Y, YU J T, et al. Optical properties of Dy2O3, Tb4O7singly doped, Dy2O3/Tb4O7 codoped borogermanate-tellurite glasses for radiation application[J]. J Lumin, 2022, 244:118737.

[76]李宝祥,王庆元,路冰宇.硼酸盐玻璃中Gd3+,Dy3+,Bi3+对Tb3+发光性质的影响[J].中国稀土学报, 1991,(1):44–46.LI Baoxiang, WANG Qingyuan, LU Bingyu. J Rare Earths(in Chinese),1991,(1):44–46.

[77]张君诚,顾牡,黄世明,等. Sb3+对Tb3+激活硅酸盐玻璃发光性能的影响[J].光谱学与光谱分析, 2008, 28(4):755–759.ZHANG Juncheng, GU Mu, HUANG Shiming, et al. Spectrosc Spectr Anal, 2008, 28(4):755–759.

[78] WEN Z X, LI L J, HUANG W J, et al. Effect of Al powder on Tb3+-doped borogermanate glass for X-ray detection[J]. J Lumin, 2022,250:119095.

[79] QIAN S, HUANG L H, ZHAO S L, et al. Luminescent properties of Tb3+doped high density borogermanate scintillating glasses[J]. J Rare Earths, 2017, 35(8):787–790.

[80] STRUEBING C, LEE G, WAGNER B, et al. Synthesis and luminescence properties of Tb doped La BGeO5 and GdBGeO5 glass scintillators[J]. J Alloys Compd, 2016, 686:9–14.

[81] HAN T T, SUN X Y, LAI X Q, et al. Role of Gd2O3 on tailoring structural and optical properties of Tb3+-activated borogermanatetellurite glasses[J]. Radiat Phys Chem, 2021, 189:109734.

[82] ZHAO J T, HUANG L H, LIANG T Y, et al. Luminescent properties of Eu3+doped heavy tellurite scintillating glasses[J]. J Lumin, 2019, 205:342–345.

[83] FU J, KOBAYASHI M, SUGIMOTO S, et al. Eu3+-activated heavy scintillating glasses[J]. Mater Res Bull, 2008, 43(6):1502–1508.

[84] WANTANA N, KAEWNUAM E, RUANGTAWEEP Y, et al. High density tungsten gadolinium borate glasses doped with Eu3+ion for photonic and scintillator applications[J]. Radiat Phys Chem, 2020, 172:108868.

[85]孙心瑗,邓昌滨,温玉锋,等. Eu3+激活氟氧硼酸锗酸盐闪烁玻璃的发光性能[J].发光学报, 2020, 41(4):371–378.SUN Xinyuan, DENG Changbin, WEN Yufeng, et al. Chin J Lumin,2020, 41(4):371–378.

[86] SUN X Y, YE Z P, ZHANG Z J, et al. Energy transfer study on dense Eu3+/Tb3+-coactivated oxyfluoride borogermanate scintillating glasses[J]. J Am Ceram Soc, 2015, 98(3):781–787.

[87] DENG C B, ZHANG M, LAN T, et al. Spectroscopic investigation on Eu3+-doped Te O2–Lu2O3–WO3 optical glasses[J]. J Non Cryst Solids,2021, 554:120565.

[88] WANG X X, HUANG L H, ZHAO S L, et al. Eu3+doped heavy germanate scintillating glasses[J]. J Lumin, 2018, 196:256–258.

[89] SUN X Y, YANG Q M, XIE P, et al. Effects of substitution of BaF2 for GdF3 on optical properties of dense oxyfluoride borogermanate scintillating glasses[J]. J Rare Earths, 2015, 33(8):800–804.

[90] SUN X Y, ZHANG X, CHEN H H, et al. Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses[J]. J Non Cryst Solids, 2014, 404:162–166.

[91] DAMDEE B, KIRDSIRI K, KIM H J, et al. Physical and photoluminescence investigations of Eu3+doped gadolinium borate scintillating glass[J]. Radiat Phys Chem, 2022, 200:110386.

[92] WANTANA N, KAEWNUAM E, DAMDEE B, et al. Energy transfer based emission analysis of Eu3+doped Gd2O3–CaO–SiO2–B2O3 glasses for laser and X-rays detection material applications[J]. J Lumin, 2018,194:75–81.

[93] CHEN X Y, HUANG L H, LI B, et al. Luminescence properties of Pr3+doped high density germanate scintillating glasses for fast-event X-ray detection[J]. Ceram Int, 2023, 49(1):1148–1153.

[94] MUGONI C, GATTO C, PLA-DALMAU A, et al. Structure and luminescence properties of Dy2O3 doped bismuth-borate glasses[J]. J Non Cryst Solids, 2017, 471:295–300.

[95] KLIMESZ B, LISIECKI R, RYBA-ROMANOWSKI W. Sm3+-doped oxyfluorotellurite glasses-spectroscopic, luminescence and temperature sensor properties[J]. J Alloys Compd, 2019, 788:658–665.

[96] HERRMANN A, FRIEDRICH D, ZSCHECKEL T, et al. Luminescence properties of Sm3+doped alkali/earth alkali orthoborates of the type XZBO3 with X=Li, Na, Cs and Z=Ca, Sr, Ba[J]. J Lumin, 2019, 214:116550.

[97] WANTANA N, KAEWNUAM E, KIM H J, et al. X-ray/proton and photoluminescence behaviors of Sm3+doped high-density tungsten gadolinium borate scintillating glass[J]. J Alloys Compd, 2020, 849:156574.

[98] LIU H, ZHAO J T, HUANG L H, et al. Luminescence properties of Er3+doped high density germanate glass scintillators for X-ray computed tomography(CT)[J]. Ceram Int, 2024, 50(5):8535–8538.

基本信息:

DOI:10.14062/j.issn.0454-5648.20240379

中图分类号:TQ171.1

引用信息:

[1]张凤,张润杰,吕时超等.高能射线探测用高密度玻璃闪烁体研究进展[J].硅酸盐学报,2024,52(12):3856-3867.DOI:10.14062/j.issn.0454-5648.20240379.

基金信息:

国家杰出青年科学基金(62125502)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文