nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 03 v.53 574-585
聚羧酸系高效减水剂:结构设计、应用技术与展望
基金项目(Foundation): 湖南大学建筑安全与节能教育部重点实验室开放基金项目(2022BSEE00X)
邮箱(Email): lei.lei@hnu.edu.cn;
DOI: 10.14062/j.issn.0454-5648.20240565
中文作者单位:

西安高技术研究所;湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室;慕尼黑工业大学,TUM自然科学学院;

摘要(Abstract):

当前全球混凝土行业正致力于推动降碳、节能与减排,这一趋势加速了低碳胶凝材料的广泛应用。随着低碳胶凝材料技术的不断进步,开发适用于低熟料或无熟料胶凝体系的聚羧酸系减水剂(PCE)变得尤为重要。基于此,本文首先概述了PCE的分类、结构设计原理、合成方法及性能特点,探讨了PCE的最新应用进展与技术创新,特别强调了PCE在低碳掺合料胶凝体系中面临的应用挑战。最后,本文展望了PCE的技术前景及其在实现混凝土行业低碳转型中的重点发展方向。

关键词(KeyWords): 聚羧酸系减水剂;低碳掺合料胶凝体系;分子设计;工作性能
参考文献

[1]王子明,王晓丰,郝利炜,等.聚合工艺对聚羧酸高性能减水剂性能的影响[J].新型建筑材料, 2008, 35(7):67–70.WANG Ziming, WANG Xiaofeng, HAO Liwei, etc. New Build Mater,2008, 35(7):67–70.

[2]冉千平,缪昌文,刘加平,等.梳形接枝共聚物水泥分散剂及复合水泥分散剂[P]. CN Patent, 101659529, 2010–03–03.RAN Q P, MIAO C W, Liu J P, etc. Dispersants of comb grafted copolymer for cement and cement composites[P](in Chinese). CN Patent, 101659529. 2010–03–03.

[3] POURCHET S, LIAUTAUD S, RINALDI D, et al. Effect of the repartition of the PEG side chains on the adsorption and dispersion behaviors of PCP in presence of sulfate[J]. Cem Concr Res, 2012, 42(2):431–439.

[4] PAAS J, MüLLER M, PLANK J. Influence of diester content in macromonomers on performance of MPEG-based PCEs[C]//ACI Special Publication, 2015, 302:199–210.

[5] AKIMOTO S I, HONDA S, YASUKOHCHI T. Additives for cement[P].US Patent, 4946904. 1990–08–07.

[6] SATOH H, MINO H, IZUMI T, et al. Concrete admixture[P]. US Patent,6462110. 2002–10–08.

[7]戚龙娟,王立艳,李修固,等.聚羧酸系高效减水剂合成工艺的优化研究[J].化学研究与应用, 2022, 34(1):219–224.QI Longjuan, WANG Liyan, LI Xiugu, et al. Chem Res Appl, 2022,34(1):219–224.

[8]王子明,徐莹,吴昊,等.聚羧酸减水剂的常温合成方法[P]. CN Patent, 101974135A. 2011–02–16.WANG Z M, XU Y, WU H, et al. Synthesis of polycarboxylate superplasticizer at room temperature[P](in Chinese). CN Patent101974135A. 2011–02–16.

[9]孙振平,杨海静,吴乐林,等。含不同酯基官能团的PCE的缓释保塑效应及机理[J].建筑材料学报, 2024. https://link.cnki.net/urlid/31.1764.TU.20240809.1938.006.SUN Z P, YANG H J, WU L L, et al. J Build Mater, 2024.https://link.cnki.net/urlid/31.1764.TU.20240809.1938.006.

[10]董楠,金一丰,万庆梅,等.一种异戊烯醇聚醚低温合成聚羧酸减水剂的方法[P]. CN Patent, 104262547A. 2015–01–07.DONG N, JIN Y F, WAN Q M, etc. A method of low temperature synthesis of polycarboxylate superplasticizer[P](in Chinese). CN Patent,104262547A. 2015–01–07.

[11] NAGARE K. Storage and/or transportation method of polyalkylene glycol monomers[P]. US Patent, 7030282. 2006–04–18.

[12]曾珣,陈杰,方世昌,等.一种新型VPEG聚醚合成高性能聚羧酸减水剂的制备方法[P]. CN111825373A. 2020–10–27.ZENG X, CHEN J, FANG S C, etc. Preparation of a new type of polycarboxylate superplasticizer copolymerized with VPEG polyether[P](in Chinese). US Patent, 111825373A. 2020–10–27.

[13] LIU G J, QIN X, WEI X H, et al. Study on the monomer reactivity ratio and performance of EPEG-AA(ethylene-glycol monovinyl polyethylene glycol–acrylic acid)copolymerization system[J]. J Macromol Sci Part A, 2020, 57(9):646–653.

[14]梁华鹏,张家如,傅曹辉,等.新型GPEG聚醚单体聚羧酸减水剂及其制备工艺[P]. CN Patent, 114195955A. 2022–03–18.LIANG H P, ZHANG J R, FU C H, etc. A new type of GPEG PCE and its preparation process[P](in Chinese). CN Patent, 114195955A.2022–03–18.

[15] TANAKA Y. Fluidizing mechanism and application of polycarboxlate-based superplasticizers[C]//ACI Special Publication,1997, 173:359–378.

[16] TAHARA H, ITO H, MORI Y, et al. Cement additive, method for producing the same, and cement composition[P]. US Patent, 5476885.1995–12–19.

[17] MIAO C W, QIAO M, RAN Q P, et al. Preparation method of hyperbranched polycarboxylic acid containing copolymer cement dispersant[P]. US Patent, 9175122. 2015–11–03.

[18] BANDOH H. Cement dispersant and concrete composition contain the dispersant[P]. US Patent, 20070039515. 2007–02–22.

[19]王秀梅,杨勇,舒鑫,等.一种酰胺/酰亚胺结构的聚羧酸减水剂及其制备方法[P]. CN Patent, 107652405B. 2020-04-24.

[20] PLANK J, GRETZ M. Study on the interaction between anionic and cationic latex particles and Portland cement[J]. Colloids Surf A Physicochem Eng Aspects, 2008, 330(2–3):227–233.

[21] LU Z C, KONG X M, ZHANG C Y, et al. Effects of two oppositely charged colloidal polymers on cement hydration[J]. Cem Concr Compos, 2019, 96:66–76.

[22] EZZAT M, XU X W, EL CHEIKH K, et al. Structure-property relationships for polycarboxylate ether superplasticizers by means of RAFT polymerization[J]. J Colloid Interface Sci, 2019, 553:788–797.

[23] CHEN X D, TANG X D, ZHANG C Z, et al. Synthesis and property of EPEG-based polycarboxylate ether superplasticizers via RAFT polymerization[J]. Polym Eng Sci, 2022, 62(9):2769–2778.

[24] FANG X Y, SHI Y, YAN C F, et al. Polycarboxylate ether superplasticizer with gradient structure:Excellent dispersion capability and sulfate resistance[J]. Colloid Polym Sci, 2022, 300(10):1113–1127.

[25] LAI G H, LIU X, SONG X F, et al. A mechanistic study on the effectiveness of star-like and comb-like polycarboxylate superplasticizers in cement pastes[J]. Cem Concr Res, 2024, 175:107389.

[26] FAN W, STOFFELBACH F, RIEGER J, et al. A new class of organosilane-modified polycarboxylate superplasticizers with low sulfate sensitivity[J]. Cem Concr Res, 2012, 42(1):166–172.

[27] GU Y, RAN Q P, SHU X, et al. Synthesis of nanoSiO2@PCE core-shell nanoparticles and its effect on cement hydration at early age[J]. Constr Build Mater, 2016, 114:673–680.

[28] HUANG J, ZHAO Y T, WANG X, et al. Dispersing silica fume in cementitious materials by silane copolymerized polycarboxylate superplasticizer:On the role of dispersion effectiveness as a function of silane concentration[J]. Constr Build Mater, 2022, 326:126832.

[29] WANG R, HAN K, LI Y, et al. A novel anti-clay silane-modified polycarboxylate superplasticizer:Preparation, performance and mechanism[J]. Constr Build Mater, 2022, 331:127311.

[30] MOSQUET M, CHEVALIER Y, BRUNEL S, et al. Polyoxyethylene di-phosphonates as efficient dispersing polymers for aqueous suspensions[J]. J Appl Polym Sci, 1997, 65(12):2545–2555.

[31] KRAUS A, DIERSCHKE F, BECKER F, et al. Method for producing phosphated polycondensation products and the use thereof[P]. US Patent, 9156737. 2015-10-13.

[32] DALAS F, NONAT A, POURCHET S, et al. Tailoring the anionic function and the side chains of comb-like superplasticizers to improve their adsorption[J]. Cem Concr Res, 2015, 67:21–30.

[33] ILG M, PLANK J. A novel kind of concrete superplasticizer based on lignite graft copolymers[J]. Cem Concr Res, 2016, 79:123–130.

[34] LU S H, LIU G, MA Y F, et al. Synthesis and application of a new vinyl copolymer superplasticizer[J]. J Appl Polym Sci, 2010, 117(1):273–280.

[35] GUAN J N, LIU X, LAI G H, et al. Effect of sulfonation modification of polycarboxylate superplasticizer on tolerance enhancement in sulfate[J]. Constr Build Mater, 2021, 273:122095.

[36] GUAN J N, LIU X, LIU S J, et al. Comb polymer with ionic side chains as a novel dispersant for cement slurries:Synthesis, characterization and working mechanism[J]. Adv Powder Technol, 2024, 35(2):104323.

[37] LIU X, GUAN J N, LAI G H, et al. Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete[J]. J Ind Eng Chem, 2017, 55:80–90.

[38]张光华,王爽,张策,等.双子季铵盐对聚羧酸减水剂抗泥性能的影响[J].硅酸盐学报, 2019, 47(2):178–183.ZHANG Guanghua, WANG Shuang, ZHANG Ce, et al. J Chin Ceram Soc, 2019, 47(2):178–183.

[39]吕生华,曹强,李第,等.新型含苯环聚羧酸系减水剂的制备与性能[J].精细化工, 2013, 30(6):696–700.LüShenghua, CAO Qiang, LI Di, et al. Fine Chem, 2013, 30(6):696–700.

[40] XU H J, SUN S M, WEI J X, et al. β-cyclodextrin as pendant groups of a polycarboxylate superplasticizer for enhancing clay tolerance[J]. Ind Eng Chem Res, 2015, 54(37):9081–9088.

[41] BEAUDOIN J J, DRAMéH, RAKI L, et al. Formation and properties of C-S-H–PEG nano-structures[J]. Mater Struct, 2009, 42(7):1003–1014.

[42]黄伟,方云辉,衷从浩,等.一种纳米C-S-H-PCE早强剂及其制备方法[P]. CN Patent, 115196903A. 2022-10-18.HUANG Wei, FANG Yunhui, ZHONG Conghao, et al. CN Patent,115196903A. 2022-10-18.

[43]雷凤珍,雷蕾,康阳阳,等.聚羧酸减水剂的酸醚比对水化硅酸钙晶种早强作用的影响[J].硅酸盐学报, 2023, 51(7):1649–1659.LEI Fengzhen, LEI Lei, KANG Yangyang, et al. J Chin Ceram Soc,2023, 51(7):1649–1659.

[44]王学川,王子明,刘晓,等.聚羧酸减水剂改性水化硅酸钙晶核对水泥水化进程的影响[J].硅酸盐学报, 2023, 51(8):1979–1986.WANG Xuechuan, WANG Ziming, LIU Xiao, et al. J Chin Ceram Soc,2023, 51(8):1979–1986.

[45]刘加平,混凝土低碳发展新路径[C]//第四届中国混凝土大讲堂,南京, 2022.

[46] SCHIEFER C, PLANK J. CO2 emission of polycarboxylate superplasticizers(PCEs)used in concrete[J]. J Clean Prod, 2023, 427:138785.

[47] SCRIVENER K, MARTIRENA F, BISHNOI S, et al. Calcined clay limestone cements(LC3)[J]. Cem Concr Res, 2018, 114:49–56.

[48] AKHLAGHI O, AYTAS T, TATLI B, et al. Modified poly(carboxylate ether)-based superplasticizer for enhanced flowability of calcined clay-limestone-gypsum blended Portland cement[J]. Cem Concr Res,2017, 101:114–122.

[49] TIAN H W, KONG X M, MIAO X, et al. A new insight into the working mechanism of PCE emphasizing the interaction between PCE and Ca2+in fresh cement paste[J]. Constr Build Mater, 2021, 275:122133.

[50] LEI L, HIRATA T, PLANK J. 40 years of PCE superplasticizersHistory, current state-of-the-art and an outlook[J]. Cem Concr Res,2022, 157:106826.

[51] CONTE T, PLANK J. Impact of molecular structure and composition of polycarboxylate comb polymers on the flow properties of alkali-activated slag[J]. Cem Concr Res, 2019, 116:95–101.

[52] PAILLARD C, CORDOBA M A, SANSON N, et al. The role of solvent quality and of competitive adsorption on the efficiency of superplasticizers in alkali-activated slag pastes[J]. Cem Concr Res,2023, 163:107020.

[53] MARCHON D, SULSER U, EBERHARDT A, et al. Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete[J]. Soft Matter, 2013, 9(45):10719–10728.

[54] PALACIOS M, PUERTAS F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars[J]. Cem Concr Res, 2005, 35(7):1358–1367.

[55] LEI L, ZHANG Y. Preparation of isoprenol ether-based polycarboxylate superplasticizers with exceptional dispersing power in alkali-activated slag:Comparison with ordinary Portland cement[J].Compos Part B Eng, 2021, 223:109077.

[56] ZHANG Y, LEI L, PLANK J, et al. Boosting the performance of low-carbon alkali activated slag with APEG PCEs:A comparison with ordinary Portland cement[J]. J Sustain Cem Based Mater, 2023, 12(11):1347–1359.

[57] ZHANG Y, CHAN H K, HAN Z Y, et al. Why do conventional MAA-MPEG PCEs not work in alkali-activated slag systems?[J]. Cem Concr Res, 2024, 184:107599.

基本信息:

DOI:10.14062/j.issn.0454-5648.20240565

中图分类号:TU528.042.2

引用信息:

[1]张岳,肖宇翀,马陈宇等.聚羧酸系高效减水剂:结构设计、应用技术与展望[J].硅酸盐学报,2025,53(03):574-585.DOI:10.14062/j.issn.0454-5648.20240565.

基金信息:

湖南大学建筑安全与节能教育部重点实验室开放基金项目(2022BSEE00X)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文