nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 09, v.51 2446-2464
新型胶凝材料:石灰石煅烧黏土水泥研究进展
基金项目(Foundation): 政府间国际科技创新合作重点专项(2018YFE0106300)
邮箱(Email): ;;;
DOI: 10.14062/j.issn.0454-5648.20230239
摘要:

石灰石煅烧黏土水泥(LC3)是一备受关注的新型、低碳胶凝材料体系,通过将煅烧黏土、石灰石粉与石膏复合并替代部分水泥熟料有效提高了胶凝材料的经济和生态效益。本工作分别从LC3体系水化、微观结构及性能、原材料生产及替代、应用前景及碳排放几个方面总结了该领域最新研究进展,并针对制约LC3体系在中国应用及发展的关键问题,如黏土质原材料地区性差异、去杂/煅烧工艺、可替代硅铝质原材料可用性等以及该领域研究中存在的不足,如水化热动力学模型的完善、LC3基水泥混凝土材料/结构长期性能研究等进行了讨论和展望。

Abstract:

Limestone calcined clay cement (LC3) has attracted much attention as a low-carbon cementitious material.The economic and ecological benefits of cementitious materials are greatly improved by partially replacing Portland cement with calcined clay,limestone powder and gypsum.This review summarized the latest research progress in this field from the aspects of hydration,microstructure and properties,production and substitution of raw materials,application prospects,and carbon emissions,and explored the key issues restricting the application and development of LC3 system in China (i.e.,regional differences in clay-based raw materials,bleaching/calcination process,availability of alternative silica-alumina raw materials,etc.).The improvement of the hydrothermal kinetic model and the long-term performance of LC3-based concrete materials/structures were discussed.

参考文献

[1] Global CO2 emissions in 2019–Analysis[OL]. IEA. 2023.https://www.iea.org/articles/global-co2-emissions-in-2019.

[2] DAHLMANN P, L?NGEN H B, GHENDA J T, et. al. Steel’s contribution to a low-carbon Europe 2050:Technical and economic analysis of the steel sector’s CO2 abatement potential[J]. Iron and Steel Technology, 2015, 12:62–72.

[3]庞翠娟.水泥工业碳排放影响因素分析及数学建模[D].广州:华南理工大学, 2012.PANG Cuijuan. Analysis of influence factors and mathematical modeling for the carbon emission of cement industry(in Chinese,dissertation). Guangzhou:South China University of Technology,2012.

[4]郭晓潞,李寅雪,袁淑婷.水泥生命周期评价及其低环境负荷研究进展[J].建筑材料学报, 2023:1–13.GUO Xiaolu, LI Y X, YUAN S T. J Build Mater(in Chinese), 2023:1–13.

[5] KOCAK Y. Effects of metakaolin on the hydration development of Portland–composite cement[J]. J Build Eng, 2020, 31:101419.

[6] YANG K H, MOON G D, JEON Y S. Implementing ternary supplementary cementing binder for reduction of the heat of hydration of concrete[J]. J Clean Prod, 2016, 112:845–852.

[7] SKIBSTED J, SNELLINGS R. Reactivity of supplementary cementitious materials(SCMs)in cement blends[J]. Cem Concr Res,2019, 124:105799.

[8] ANTONI M, ROSSEN J, MARTIRENA F, et al. Cement substitution by a combination of metakaolin and limestone[J]. Cem Concr Res,2012, 42(12):1579–1589.

[9] SCRIVENER K. Options for the future of cement[J]. Indian Concr J,2014, 88:11–21.

[10] SHARMA M, BISHNOI S, MARTIRENA F, et al. Limestone calcined clay cement and concrete:a state-of-the-art review[J]. Cem Concr Res, 2021, 149:106564.

[11] MARTIRENA-HERNáNDEZ J F, VIZCAíNO-ANDRéS L M,SáNCHEZ-BERRIEL S, et al. Industrial trial to produce a low clinker, low carbon cement[J]. Mater Construcc, 2015, 65(317):e045.

[12] MAITY S, MALLIK A. Pilot scale manufacture of limestone calcined clay cement:the Indian experience[J]. Indian Concr J, 2014,7:22–28.

[13] AKINDAHUNSI A A, AVET F, SCRIVENER K. The Influence of some calcined clays from Nigeria as clinker substitute in cementitious systems[J]. Case Stud Constr Mater, 2020, 13:e00443.

[14] TAO Y Z, GAUTAM B P, PRADHAN P M, et al. Characterization and reactivity of Nepali clays as supplementary cementitious material[J]. Case Stud Constr Mater, 2022, 16:e00947.

[15]周浔.我国水泥用石灰石资源与水泥工艺碳排放趋势研究[D].北京:中国地质大学(北京), 2014.ZHOU Xun. Research on trends of China’s cement limestone resources and process carbon emissions of cement(in Chinese,dissertation). Beijing:China University of Geosciences(Beijing),2014.

[16]汤升亮,王彬,潘立群,等.粘土质矿物在LC3新型低碳水泥中的应用及资源分析[J].水泥工程, 2022(2):1–4.TANG Shengliang, WANG Bin, PAN Liqun, et al. Cem Eng(in Chinese), 2022(2):1–4.

[17]王雪静,周继红,黄浪,等.不同产地高岭土的组成和结构研究[J].中国非金属矿工业导刊, 2006(1):27–29.WANG Xuejing, ZHOU Jihong, HUANG Lang, et al. China Non Met Min Ind Her(in Chinese), 2006(1):27–29.

[18] MSINJILI N S, GLUTH G J G, STURM P, et al. Comparison of calcined illitic clays(brick clays)and low-grade kaolinitic clays as supplementary cementitious materials[J]. Mater Struct, 2019, 52(5):94.

[19] ZAJAC M, ROSSBERG A, LE SAOUT G, et al. Influence of limestone and anhydrite on the hydration of Portland cements[J].Cem Concr Compos, 2014, 46:99–108.

[20] MATSCHEI T, LOTHENBACH B, GLASSER F P. The role of calcium carbonate in cement hydration[J]. Cem Concr Res, 2007,37(4):551–558.

[21] RADWAN M M, S A S E H. Hydration characteristics of tetracalcium Alumino-Ferrite phase in the presence calcium carbonate[J]. Ceramics-Silikáty, 2019, 55(4):337–342.

[22] BLACK L, BREEN C, YARWOOD J, et al. In situ Raman analysis of hydrating C3A and C4AF pastes in presence and absence of sulphate[J]. Adv Appl Ceram, 2006, 105(4):209–216.

[23] CAO Y B, WANG Y R, ZHANG Z H, et al. Thermal stability of limestone calcined clay cement(LC3)at moderate temperatures100–400℃[J]. Cem Concr Compos, 2023, 135:104832.

[24] SHAH V, PARASHAR A, MISHRA G, et al. Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete[J]. Adv Cem Res, 2020, 32(3):101–111.

[25] SCRIVENER K, MARTIRENA F, BISHNOI S, et al. Calcined clay limestone cements(LC3)[J]. Cem Concr Res, 2018, 114:49–56.

[26] PARASHAR A, BISHNOI S. Hydration behaviour of limestonecalcined clay and limestone–slag blends in ternary cement[J]. RILEM Tech Lett, 2021, 6:17–24.

[27] ZUNINO F, SCRIVENER K. Microstructural developments of limestone calcined clay cement(LC3)pastes after long-term(3years)hydration[J]. Cem Concr Res, 2022, 153:106693.

[28] ZUNINO F, SCRIVENER K. The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties[J]. Cem Concr Res, 2021, 140:106307.

[29] BRIKI Y, AVET F, ZAJAC M, et al. Understanding of the factors slowing down metakaolin reaction in limestone calcined clay cement(LC3)at late ages[J]. Cem Concr Res, 2021, 146:106477.

[30] AVET F, SCRIVENER K. Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement(LC3)[J].Cem Concr Res, 2018, 107:124–135.

[31] HU C L, TAO Y Z, GAUTAM B P, et al. Performance enhancement of sustainable cementitious material with ultrahigh content limestone and calcined clay[J]. ACS Sustainable Chem Eng, 2022, 10(32):10733–10742.

[32] SCRIVENER K, AVET F, MARAGHECHI H, et al. Impacting factors and properties of limestone calcined clay cements(LC3)[J].Green Mater, 2019, 7(1):3–14.

[33] VAASUDEVAA B V, DHANDAPANI Y, SANTHANAM M.Performance evaluation of limestone-calcined clay(LC2)combination as a cement substitute in concrete systems subjected to short-term heat curing[J]. Constr Build Mater, 2021, 302:124121.

[34] CASSAGNABèRE F, ESCADEILLAS G, MOURET M. Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete[J]. Constr Build Mater, 2009,23(2):775–784.

[35] AVET F, LI X R, SCRIVENER K. Determination of the amount of reacted metakaolin in calcined clay blends[J]. Cem Concr Res, 2018,106:40–48.

[36] WANG X Y. Evaluation of the properties of cement–calcined Hwangtoh clay–limestone ternary blends using a kinetic hydration model[J]. Constr Build Mater, 2021, 303:124596.

[37] WANG X Y. Modeling of hydration, compressive strength, and carbonation of Portland-limestone cement(PLC)concrete[J].Materials(Basel), 2017, 10(2):115.

[38] LEE H S, WANG X Y. Hydration model and evaluation of the properties of calcined hwangtoh binary blends[J].Int J Concr Struct Mater, 2021, 15(1):1–15.

[39] WANG X Y, LUAN Y. Modeling of hydration, strength development,and optimum combinations of cement–slag–limestone ternary concrete[J].Int J Concr Struct Mater, 2018, 12(1):1–13.

[40] WANG X Y. Analysis of hydration and strength optimization of cement–fly ash–limestone ternary blended concrete[J]. Constr Build Mater, 2018, 166:130–140.

[41] DHANDAPANI Y, SANTHANAM M. Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance[J]. Cem Concr Compos, 2017, 84:36–47.

[42] DHANDAPANI Y, SANTHANAM M, GETTU R, et. al.Perspectives on blended cementitious systems with calcined clay-limestone combination for sustainable low carbon cement transition[J]. Indian Concr J, 2020, 94:31–45.

[43] AVET F, BOEHM-COURJAULT E, SCRIVENER K. Investigation of C–A–S–H composition, morphology and density in limestone calcined clay cement(LC3)[J]. Cem Concr Res, 2019, 115:70–79.

[44] SALMAN A M, AKINPELU M A, YAHAYA I T, et al. Workability and strengths of ternary cementitious concrete incorporating calcined clay and limestone powder[J]. Mater Today Proc, 2023

[45] SALAU M, OSEMEKE O. Effects of temperature on the pozzolanic characteristics of metakaolin-concrete[J]. Phys Sci Int J, 2015, 6(3):131–143.

[46] JASKULSKI R, Jó?WIAK-NIED?WIEDZKA D, YAKYMECHKO Y. Calcined clay as supplementary cementitious material[J].Materials(Basel), 2020, 13(21):4734.

[47] HOU P K, MUZENDA T R, LI Q F, et al. Mechanisms dominating thixotropy in limestone calcined clay cement(LC3)[J]. Cem Concr Res, 2021, 140:106316.

[48] KAWASHIMA S, CHAOUCHE M, CORR D J, et al. Rate of thixotropic rebuilding of cement pastes modified with highly purified attapulgite clays[J]. Cem Concr Res, 2013, 53:112–118.

[49] QIAN Y, DE SCHUTTER G. Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer(PCE)[J]. Cem Concr Res, 2018, 111:15–22.

[50] LORENTZ B, ZHU H, MAPA D, et al. Effect of Clay Mineralogy,Particle Size, and Chemical Admixtures on the Rheological Properties of CCIL and CCI/II Systems[C]//BISHNOI S. Calcined Clays for Sustainable Concrete. Singapore:Springer, 2020:211–218.

[51] AVET F, SNELLINGS R, ALUJAS DIAZ A, et al. Development of a new rapid, relevant and reliable(R3)test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays[J]. Cem Concr Res,2016, 85:1–11.

[52] ZUNINO F. Limestone calcined clay cements(LC3):raw material processing, sulfate balance and hydration kinetics[D]. Lausanne:école Polytechnique Fédérale de Lausanne, 2020.

[53] RUAN Y X, JAMIL T, HU C L, et al. Microstructure and mechanical properties of sustainable cementitious materials with ultra-high substitution level of calcined clay and limestone powder[J]. Constr Build Mater, 2022, 314:125416.

[54] LIN R S, LEE H S, HAN Y, et al. Experimental studies on hydration–strength–durability of limestone–cement-calcined Hwangtoh clay ternary composite[J]. Constr Build Mater, 2021, 269:121290.

[55] DHANDAPANI Y, SAKTHIVEL T, SANTHANAM M, et al.Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement(LC3)[J]. Cem Concr Res, 2018,107:136–151.

[56] BENTZ D P. A virtual rapid chloride permeability test[J]. Cem Concr Compos, 2007, 29(10):723–731.

[57] MARAGHECHI H, AVET F, WONG H, et al. Performance of Limestone Calcined Clay Cement(LC3)with various kaolinite contents with respect to chloride transport[J]. Mater Struct, 2018,51(5):1–17.

[58] SHI C, YIN J, HU C L. Microstructure, hydration and chloride binding behavior of limestone calcined clay cement(LC3)prepared using seawater[J], J Mater Civil Eng, 2023, 10.1061

[59] MEDJIGBODO G, ROZIèRE E, CHARRIER K, et al. Hydration,shrinkage, and durability of ternary binders containing Portland cement, limestone filler and metakaolin[J]. Constr Build Mater, 2018,183:114–126.

[60] NAJIMI M, SOBHANI J, POURKHORSHIDI A R. Durability of copper slag contained concrete exposed to sulfate attack[J]. Constr Build Mater, 2011, 25(4):1895–1905.

[61] SHI Z G, FERREIRO S, LOTHENBACH B, et al. Sulfate resistance of calcined clay–limestone–portland cements[J]. Cem Concr Res,2019, 116:238–251.

[62] AKKAYA Y, OUYANG C S, SHAH S P. Effect of supplementary cementitious materials on shrinkage and crack development in concrete[J]. Cem Concr Compos, 2007, 29(2):117–123.

[63] NGUYEN Q D, AFROZ S, ZHANG Y D, et al. Autogenous and total shrinkage of limestone calcined clay cement(LC3)concretes[J].Constr Build Mater, 2022, 314:125720.

[64] TIRONI A, SCIAN A N, IRASSAR E F. Blended cements with limestone filler and kaolinitic calcined clay:filler and pozzolanic effects[J]. J Mater Civ Eng, 2017, 29(9):04017116.

[65] SIDNEY M, FRANCIS A J, DAVID D. Concrete[M]. New Jersey,Prentice Hall, 2003.

[66] SEO J, PARK S, YOON H N, et al. Effect of CaO incorporation on the microstructure and autogenous shrinkage of ternary blend Portland cement-slag-silica fume[J]. Constr Build Mater, 2020, 249:118691.

[67] GüNEYISI E, GESO?LU M,?ZBAY E. Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures[J]. Constr Build Mater,2010, 24(10):1878–1887.

[68] LI Z Q. Drying shrinkage prediction of paste containing meta-Kaolin and ultrafine fly ash for developing ultra-high performance concrete[J]. Mater Today Commun, 2016, 6:74–80.

[69] NAIR N, MOHAMMED HANEEFA K, SANTHANAM M, et al. A study on fresh properties of limestone calcined clay blended cementitious systems[J]. Constr Build Mater, 2020, 254:119326.

[70] LEI L, PALACIOS M, PLANK J, et al. Interaction between polycarboxylate superplasticizers and non-calcined clays and calcined clays:a review[J]. Cem Concr Res, 2022, 154:106717.

[71] MUZENDA T R, HOU P K, KAWASHIMA S, et al. The role of limestone and calcined clay on the rheological properties of LC3[J].Cem Concr Compos, 2020, 107:103516.

[72] NEHDI M L. Clay in cement-based materials:critical overview of state-of-the-art[J]. Constr Build Mater, 2014, 51:372–382.

[73] MA Y H, SHI C J, LEI L, et al. Research progress on polycarboxylate based superplasticizers with tolerance to clays-A review[J]. Constr Build Mater, 2020, 255:119386.

[74] ANDERSON R L, RATCLIFFE I, GREENWELL H C, et al. Clay swelling—a challenge in the oilfield[J]. Earth Sci Rev, 2010, 98(3–4):201–216.

[75] YANJUN R, WANG H N, ZECHEN R, et al. Adsorption of imidazolium-based ionic liquid on sodium bentonite and its effects on rheological and swelling behaviors[J]. Appl Clay Sci, 2019, 182:105248.

[76]陈友治,张迈,董瑀.磺化木质素对蒙脱土吸附聚羧酸减水剂的抑制作用及机理[J].硅酸盐学报, 2018, 46(2):212–217.CHEN Youzhi, ZHANG Mai, DONG Yu. J Chin Ceram Soc, 2018,46:212–217.

[77] NG S, PLANK J. Study on the interaction of Na-montmorillonite clay with polycarboxylates[C]//Tenth International Conference on Superplasticizers and other Chemical Admixtures. New York,America, 2012:407–421.

[78] ZINGG A, WINNEFELD F, HOLZER L, et al. Interaction of polycarboxylate-based superplasticizers with cements containing different C3A amounts[J]. Cem Concr Compos, 2009, 31(3):153–162.

[79] NG S, PLANK J. Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers[J]. Cem Concr Res, 2012, 42(6):847–854.

[80] SCHMID M, PLANK J. Dispersing performance of different kinds of polycarboxylate(PCE)superplasticizers in cement blended with a calcined clay[J]. Constr Build Mater, 2020, 258:119576.

[81] LI R, LEI L, SUI T B, et al. Effectiveness of PCE superplasticizers in calcined clay blended cements[J]. Cem Concr Res, 2021, 141:106334.

[82] AKHLAGHI O, AYTAS T, TATLI B, et al. Modified poly(carboxylate ether)-based superplasticizer for enhanced flowability of calcined clay-limestone-gypsum blended Portland cement[J]. Cem Concr Res, 2017, 101:114–122.

[83]冯雪茹,邓建,严伟平,等.我国高岭土开发现状及综合利用进展[J].矿产综合利用, 2022(6):1–10.FENG Xueru, DENG Jian, YAN Weiping, et al. Multipurp Util Miner Resour(in Chinese), 2022(6):1–10.

[84]孙继颖.我国粘土砖的发展前途[J].中国建材, 1981(3):50–52.SUN Jiying. Chin Build Mater(in Chinese), 1981(3):50–52.

[85]王振宇,刘滢.高岭土选矿除铁工艺研究现状[J].南方金属,2012(3):8–11.WANG Zhenyu, LIU Ying. South Met(in Chinese), 2012(3):8–11.

[86]赵杏媛,张有瑜.粘土矿物与粘土矿物分析[M].北京:海洋出版社, 1990.ZHAO Xingyuan, ZHANG Youyu. Beijing:China Ocean Press(in Chinese), 1990.

[87]任盼力,赵世永,聂鑫.煤矸石矿物学性质及磁种法磁选除铁钛研究[J].矿产综合利用, 2023(1):172–176.REN Panli, ZHAO Shiyong, NIE Xin. Multipurp Util Miner Resour(in Chinese), 2023(1):172–176.

[88]王思婕.浮选尾煤提纯高岭土试验研究[D].徐州:中国矿业大学,2022.WANG Sijie. Experimental study on purification of Kaolin from flotation tail coal[D]. Xuzhou:China University of Mining and Technology, 2022.

[89]刁润丽,张晓丽.高岭土的化学除铁增白方法研究进展[J].硅酸盐通报, 2017, 36(8):2648–2652.DIAO Runli, ZHANG Xiaoli. Bull Chin Ceram Soc(in Chinese),2017, 36(8):2648–2652.

[90]刁会鹏.高岭土增白工艺及综合利用探究[D].呼和浩特:内蒙古大学, 2021.DIAO Huipeng. Study on whitening technology and comprehensive utilization of Kaolin(in Chinese, dissertation). Hohhot:Inner Mongolia University, 2021.

[91]丁铸,张洋,洪成雨,等.黏土矿物增白技术的研究进展[J].中国粉体技术, 2019, 25(6):62–67.DING Zhu, ZHANG Yang, HONG Chengyu, et al. China Powder Sci Technol(in Chinese), 2019, 25(6):62–67.

[92] GONZáLEZ J A, DEL C RUIZ M. Bleaching of kaolins and clays by chlorination of iron and titanium[J]. Appl Clay Sci, 2006, 33(3–4):219–229.

[93] SABIR B B, WILD S, BAI J. Metakaolin and calcined clays as pozzolans for concrete:a review[J]. Cem Concr Compos, 2001, 23(6):441–454.

[94] ALMENARES R S, VIZCAíNO L M, DAMAS S, et al. Industrial calcination of kaolinitic clays to make reactive pozzolans[J]. Case Stud Constr Mater, 2017, 6:225–232.

[95] TOKYAY M. Cement and concrete mineral admixtures[M]. London:CRC Press, 2016.

[96]徐帅,谢峻林,梅书霞,等.高岭土悬浮煅烧炉中气固二相流场的数值模拟[J].新世纪水泥导报, 2023, 29(2):51–56.XU Shuai, XIE Junlin, MEI Shuxia, et al. Cem Guide New Epoch(in Chinese), 2023, 29(2):51–56.

[97]袁帅.煤矸石悬浮煅烧活化制备煅烧高岭土基础研究[D].沈阳:东北大学, 2019.YUAN Shuai. Basic research on suspension calcination activation of coal gangue for preparation of calcined kaolin(in Chinese,dissertation). Shenyang:Northeastern University, 2019.

[98] TANG S L, WU J J, SONG H T, et al. Research and Design of Suspension Calcining Technology and Equipment for Kaolin[C]//BISHNOI S. Calcined Clays for Sustainable Concrete. Singapore:Springer, 2020:179–189.

[99] DA SILVA M R C, MALACARNE C S, LONGHI M A, et al.Valorization of Kaolin mining waste from the Amazon region(Brazil)for the low-carbon cement production[J]. Case Stud Constr Mater,2021, 15:e00756.

[100] CHEN W H, DANG J T, DU H J. Using low-grade calcined clay to develop low-carbon and lightweight strain-hardening cement composites[J]. J Build Eng, 2022, 58:105023.

[101] MOHIT M, HAFTBARADARAN H, RIAHI H T. Investigating the ternary cement containing Portland cement, ceramic waste powder,and limestone[J]. Constr Build Mater, 2023, 369:130596.

[102] LIU Y X, LING T, WANG M, et al. Synergic performance of low-kaolinite calcined coal gangue blended with limestone in cement mortars[J]. Constr Build Mater, 2021, 300:124012.

[103] KRISHNAN S, BISHNOI S. Understanding the hydration of dolomite in cementitious systems with reactive aluminosilicates such as calcined clay[J]. Cem Concr Res, 2018, 108:116–128.

[104] MASCARIN L, EZ-ZAKI H, GARBIN E, et al. Mitigating the ecological footprint of alkali-activated calcined clays by waste marble addition[J]. Cem Concr Compos, 2022, 127:104382.

[105] KRISHNAN S, KANAUJIA S K, MITHIA S, et al. Hydration kinetics and mechanisms of carbonates from stone wastes in ternary blends with calcined clay[J]. Constr Build Mater, 2018, 164:265–274.

[106] SALVI MALACARNE C, RUBENS CARDOSO DA SILVA M,DANIELI S, et al. Environmental and technical assessment to support sustainable strategies for limestone calcined clay cement production in Brazil[J]. Constr Build Mater, 2021, 310:125261.

[107] MARANGU J M. Physico-chemical properties of kenyan made calcined clay-limestone cement(LC3)[J]. Case Stud Constr Mater,2020, 12:e00333.

[108] CANCIO DíAZ Y, SáNCHEZ BERRIEL S, HEIERLI U, et al.Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies[J]. Dev Eng, 2017,2:82–91.

[109] BISHNOI S, MAITY S. Limestone Calcined Clay Cement:The Experience in India This Far[C]//MARTIRENA F, FAVIER A,SCRIVENER K. Calcined Clays for Sustainable Concrete. Dordrecht:Springer, 2018:64-68.

[110] Joseph S, Bishnoi S, Maity S. An economic analysis of the production of limestone calcined clay cement in India[J]. Indian Concr J, 2016, 90:22–27.

[111] MARTIRENA F, SCRIVENER K. Low Carbon Cement LC3 in Cuba:Ways to Achieve a Sustainable Growth of Cement Production in Emerging Economies[C]//MARTIRENA F, FAVIER A,SCRIVENER K. Calcined Clays for Sustainable Concrete. Dordrecht:Springer, 2018:318–321.

[112] LC3 in use:Applications[OL]. https://lc3.ch/lc3-in-use-applications/

[113] YANG E H, SAHMARAN M, YANG Y, et. al. Rheological control in production of engineered cementitious composites[J]. ACI Mater J,2009, 106(4):357–366.

[114] LI V, WU C, WANG S, et. al. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite(PVA-ECC)[J].ACI Mater J, 2002, 99(5):463–472.

[115] LIU J, ZHANG W Z, LI Z L, et al. Investigation of using limestone calcined clay cement(LC3)in engineered cementitious composites:the effect of propylene fibers and the curing system[J]. J Mater Res Technol, 2021, 15:2117–2144.

[116] ZHOU Y W, GONG G Q, XI B, et al. Sustainable lightweight engineered cementitious composites using limestone calcined clay cement(LC3)[J]. Compos B Eng, 2022, 243:110183.

[117] LALRINMAWII E, SAHU S, SARKAR P, et al. Feasible use of recycled foam concrete in cement mortar[J]. IOP Conf Ser:Mater Sci Eng, 2020, 936(1):012011.

[118] ALGHAMDI H, SHOUKRY H, ABADEL A A, et al. Performance assessment of limestone calcined clay cement(LC3)-Based lightweight green mortars incorporating recycled waste aggregate[J].J Mater Res Technol, 2023, 23:2065–2074.

[119] SHI C, HU C L. Mechanical and thermal insulation properties of clay-based lightweight concrete[C]//International Conference on Durability of Concrete Structures. Jinan, China, 2022.

[120] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cem Concr Res, 1995, 25(7):1501–1511.

[121] SUN Y, YU R, WANG S Y, et al. Development of a novel eco-efficient LC2 conceptual cement based ultra-high performance concrete(UHPC)incorporating limestone powder and calcined clay tailings:design and performances[J]. J Clean Prod, 2021, 315:128236.

[122] DONG Y M, LIU Y, HU C L. Towards greener ultra-high performance concrete based on highly-efficient utilization of calcined clay and limestone powder[J]. J Build Eng, 2023, 66:105836.

[123]董烨民,胡传林.不同养护制度下大掺量石灰石煅烧黏土UHPC早期水化及力学性能发展[J].硅酸盐通报, 2022, 41(6):1879–1887.DONG Yemin, HU Chuanlin. Bull Chin Ceram Soc(in Chinese),2022, 41(6):1879–1887.

[124] CHEN C, HABERT G, BOUZIDI Y, et al. LCA allocation procedure used as an incitative method for waste recycling:an application to mineral additions in concrete[J]. Resour Conserv Recycl, 2010,54(12):1231–1240.

[125] ORTIZ O, CASTELLS F, SONNEMANN G. Sustainability in the construction industry:a review of recent developments based on LCA[J]. Constr Build Mater, 2009, 23(1):28–39.

[126] LU H Y, MASANET E, PRICE L. Evaluation of life-cycle assessment studies of Chinese cement production:challenges and opportunities[C]//ACEEE Summer Study on Energy Efficiency in Industry. California, America, 2009

[127] VAN DEN HEEDE P, DE BELIE N. Environmental impact and life cycle assessment(LCA)of traditional and ‘green’ concretes:literature review and theoretical calculations[J]. Cem Concr Compos,2012, 34(4):431–442.

[128] HUMPHREYS K. Toward a sustainable cement industry, Substudy 8:Climate change[J]. http://www.wbcsdcement.org/pdf/final report8.pdf, 2002.

[129] DAMTOFT J S, LUKASIK J, HERFORT D, et al. Sustainable development and climate change initiatives[J]. Cem Concr Res, 2008,38(2):115–127.

[130] HENDRIKS C A, WORRELL E, PRICE L, et al. Emission reduction of greenhouse gases from the cement industry[M]Greenhouse Gas Control Technologies 4. Amsterdam:Elsevier, 1999:939–944.

[131] JOSA A, AGUADO A, HEINO A, et al. Comparative analysis of available life cycle inventories of cement in the EU[J]. Cem Concr Res, 2004, 34(8):1313–1320.

[132] GJORV O E, SAKAI K. Concrete Technology for a Sustainable Development in the 21st Century[M]. London:CRC Press, 2000.

[133] PRICE L, WORRELL E, PHYLIPSEN D. Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries[C]//Earth Technologies Forum, Washington DC, America,1999.

[134] FLOWER D J M, SANJAYAN J G. Green house gas emissions due to concrete manufacture[J]. Int J Life Cycle Assess, 2007, 12(5):282–288.

[135] CHEN C, HABERT G, BOUZIDI Y, et al. Environmental impact of cement production:detail of the different processes and cement plant variability evaluation[J]. J Clean Prod, 2010, 18(5):478–485.

[136] GARTNER E. Industrially interesting approaches to “low-CO2”cements[J]. Cem Concr Res, 2004, 34(9):1489–1498.

基本信息:

DOI:10.14062/j.issn.0454-5648.20230239

中图分类号:TU528;TQ177

引用信息:

[1]董烨民,钱雄,胡传林等.新型胶凝材料:石灰石煅烧黏土水泥研究进展[J].硅酸盐学报,2023,51(09):2446-2464.DOI:10.14062/j.issn.0454-5648.20230239.

基金信息:

政府间国际科技创新合作重点专项(2018YFE0106300)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文