1,220 | 39 | 16 |
下载次数 | 被引频次 | 阅读次数 |
热障涂层是高温下具有良好隔热性能的陶瓷涂层,在燃气轮机、内燃机、火箭发动机和其他高温热防护方面有重要应用。稀土或碱土金属氧化物稳定的氧化锆热障涂层材料已应用近60 a,其中最常用的是氧化钇稳定的氧化锆(YSZ)。近20 a,国内外发现了许多新材料,如稀土锆酸盐、铝酸盐和钽酸盐等。与YSZ相比,新材料在高温稳定性、热导率、抗烧结或热膨胀性能方面有优势,但断裂韧性低、成分复杂、单一陶瓷层的热循环寿命短。为了提高新型热障涂层的寿命,要严格控制涂层的制备过程、保持化学计量比,采用双陶瓷层结构的涂层。
Abstract:Thermal barrier coatings(TBCs) are ceramic coatings with a good thermal barrier effect at high temperatures, and have some important applications in the thermal protection of gas turbines, internal combustion engines, rocket engines and other high-temperature environments. Zirconia stabilized by rare-earth or alkaline earth oxides are used for nearly 60 a, and yttria stabilized zirconia(YSZ) is the mostly used material. Since last two decades, many materials are developed, i.e., nano-YSZ, rare earth zirconates, rare-earth aluminates, rare-earth tantanates, alkaline earth zirconates, etc.. New TBC materials have lower thermal conductivities, better sintering resistances and similar or larger thermal expansion coefficients, but much lower fracture toughness, more complicated compositions and therefore much shorter thermal cycling life rather than YSZ. In order to improve the durability of the TBC materials for high-temperature applications, the coating deposition process should be controlled effectively to keep a stoichiometric composition and the double-ceramic-layer(DCL) coatings could be applied.
[1]PADTURE N, GELL M, JORDAN E. Thermal barrier coatings for gas turbine engine applications[J]. Science, 2002, 296:280–284.
[2]CERNUSCHI F, BIANCHI P, LEONI M, et al. Thermal diffusivity/microstructure relationship in Y-PSZ thermal barrier coatings[J]. J Therm Spray Technol, 1999, 8(1):102–109.
[3]CLARKE D R, LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annu Rev Mater Res, 2003, 33:383–417.
[4]GOSWAMI B, RAY A K, SAHAY S K. Thermal barrier coating system for gas turbine application–A review[J]. High Temp Mater Proc,2004, 23(2):73–92.
[5]NICHOLLS J R. Advances in coating design for high-performance gas turbines[J]. MRS Bull, 2003, 28(9):659–670.
[6]BEYER S, KLEMM D, BOBETH M, et al. Improvement of the adherence of thermal barrier coatings for rocket combustion chambers[J]. Adv Eng Mater, 2005, 7(1–2):54–58.
[7]HEJWOWSKI T. Comparative study of thermal barrier coatings for internal combustion engine[J]. Vacuum, 2010, 85:610–616.
[8]ABEDIN M J, MASJUKI H H, KALAM M A, et al. Combustion,performance, and emission characteristics of low heat rejection engine operating on various biodiesels and vegetable oils[J]. Energ Convers Manage, 2014, 85:173–189.
[9]VEDHARAJ S, VALLINAYAGAM R, YANG W M, et al.Experimental and finite element analysis of a coated diesel engine fueled by cashew nut shell liquid biodiesel[J]. Exp Therm Fluid Sci,2014, 53:259–268.
[10]TAYMAZ I, CAKIR K, MIMAROGLU A. Experimental study of effective efficiency in a ceramic coated diesel engine[J]. Surf Coat Techn, 2005, 200:1182–1185.
[11]CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 2004, 24:1–10.
[12]VASSEN R, TIETZ F, KERKHOFF G, et al. New materials for advanced thermal barrier coatings[C]//Proc. 6th Liége Conference on Materials for Advanced Power Engineering, Liége, Belgium, 1998:1627–1635.
[13]MALONEY M J. Thermal barrier coating systems and materials[P].European Patent, EP 0848077 A1. 1998.
[14]VASSEN R, CAO X, TIETZ F, et al. La2Zr2O7—A new candidate for thermal barrier coatings[C]//United Thermal Spray Conference’99,Düsseldorf, Germany, 1999:830–834.
[15]VASSEN R, CAO X, TIETZ F, et al. Zirconates as new materials for thermal barrier coatings[J]. J Am Ceram Soc, 2000, 83(8):2023–2028.
[16]CAO X Q, VASSEN R, JUNGEN W, et al. Thermal stability of lanthanum zirconate plasma-sprayed coating[J]. J Am Ceram Soc,2001, 84(9):2086–2090.
[17]JARLIGO M O, MACK D E, VASSEN R, et al. Application of plasma-sprayed complex perovskites as thermal barrier coatings[J]. J Therm Spray Technol, 2009, 18(2):187–193.
[18]GADOW R, SCHAEFER G W. Thermal insulating materials and method for producing SAME[P]. German Patent, WO 99/42630A1,1999.
[19]CAO X Q, VASSEN R, FISCHER W, et al. Lanthanum cerium oxide as thermal barrier coating material for high temperature applications[J].Adv Mater, 2003, 15(17):1438–1442.
[20]CAO X Q, LI J Y, ZHONG X H, et al. La2(Zr0.7Ce0.3)2O7—A new oxide ceramic material with high sintering-resistance[J]. Mater Lett,2008, 62:2667–2669.
[21]FENG J, SHIAN S, XIAO B, et al. First-principles calculations of the high-temperature phase transformation in yttrium tantalate[J]. Phys Rev B, 2014, 90:094102.
[22]WANG J, ZHOU Y, CHONG X Y, et al. Microstructure and thermal properties of a promising thermal barrier coating:YTaO4[J]. Ceram Inter, 2016, 42:13876–13881.
[23]WANG J, CHONG X Y, ZHOU R, et al. Microstructure and thermal properties of RETaO4(RE=Nd, Eu, Gd, Dy, Er, Yb, Lu)as promising thermal barrier coating materials[J]. Scripta Mater, 2017, 126:24–28.
[24]LUO Y Y, CHEN L, WU P, et al. Synthesis and thermophysics properties of ferroelastic SmNb1–x Tax O4 ceramics[J]. Ceram Inter,2018, 44:13999–14006.
[25]WU P, CHONG X Y, FENG J. Effect of Al3+doping on mechanical and thermal properties of DyTaO4 as promising thermal barrier coating application[J]. J Am Ceram Soc, 2018, 101(5):1818–1823.
[26]ZHOU Y, GAN G Y, GE Z H, et al. Phase structures and thermophysical properties of ZrO2-doped SmTaO4 ceramics[J]. Mod Phys Lett B, 2019, 33(11):1950132.
[27]CHEN L, JIANG Y H, CHONG X Y, et al. Synthesis and thermophysical properties of RETa3O9(RE=Ce, Nd, Sm, Eu, Gd, Dy,Er)as promising thermal barrier coatings[J]. J Am Ceram Soc, 2018,101(3):1266–1278.
[28]WU P, HU M Y, CHONG X Y, et al. The glass-like thermal conductivity in ZrO2-Dy3Ta O7 ceramic for promising thermal barrier coating application[J]. Appl Phys Lett, 2018, 112(13):131903.
[29]CHEN L, WU P, SONG P, et al. Synthesis, crystal structure and thermophysical properties of(La1–x Eux)3Ta O7 ceramics[J]. Ceram Inter,2018, 44:16273–16281.
[30]CHEN L, SONG P, FENG J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3Ta O7 ceramics[J].Scripta Mater, 2018, 152:117–121.
[31]WU F S, WU P, ZONG R F, et al. Investigation on thermo-physical and mechanical properties of Dy3(Ta1–x Nbx)O7 ceramics with order-disorder transition[J]. Ceram Inter, 2019, 45:15705–15710.
[32]ZHOU Y, GAN G Y, GE Z H, et al. Thermophysical properties of SmTaO4, Sm3TaO7 and SmTa3O9 ceramics[J]. Mater Res Exp, 2020, 7:015204.
[33]ST?VER D, PRACHT G, LEHMANN H, et al. New material concepts for the next generation of plasma-sprayed thermal barrier coatings[J]. J Therm Spray Technol, 2004, 13(1):76–83.
[34]KOKINI K, TAKEUCHI Y R, CHOULES B D. Surface thermal cracking of thermal barrier coatings owing to stress relaxation:Zirconia vs. mullite[J]. Surf Coat Technol, 1996, 82:77–82.
[35]VARADARAJAN S, PATTANAIK A K, SARIN V K. Mullite interfacial coatings for SiC fibers[J]. Surf Coat Technol, 2001, 139:153–160.
[36]BARTULI C, LUSVARGHI L, MANFREDINI T, et al. Thermal spraying to coat traditional ceramic substrates:Case studies[J]. J Eur Ceram Soc, 2007, 27:1615–1622.
[37]RAMASWAMY P, SEETHARAMU S, VARMA K B R, et al.Thermal shock characteristics of plasma sprayed mullite coatings[J]. J Therm Spray Technol, 1998, 7(4):497–504.
[38]ROHAN P, NEUFUSS K, MATEJICEK J, et al. Thermal and mechanical properties of cordierite, mullite and steatite produced by plasma spraying[J]. Ceram Inter, 2004, 30:597–603.
[39]SCHNEIDER H, SCHREURER J, HILDMANN B. Structure and properties of mullite–A review[J]. J Eur Ceram Soc, 2008, 28:329–344.
[40]VASSEN R, TRAEGER F, ST?VER D. New thermal barrier coatings based on pyrochlore/YSZ double layer systems[J]. Inter J Appl Ceram Technol, 2004, 1:351–361.
[41]CAO X Q, VASSEN R, TIETZ F, et al. New double-ceramic-layer thermal barrier coatings based on zirconia–rare earth composite oxides[J]. J Eur Ceram Soc, 2006, 26:247–251.
[42]LIMA R S, MARPLE B R. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications:A review[J]. J Therm Spray Technol, 2007, 16(1):40–63.
[43]GELL M. Application opportunities for nanostructured materials and coatings[J]. Mater Sci Eng A, 1995, 204:246–251.
[44]GELL M. The potential for nanostructured materials in gas turbine engines[J]. Nanostruct Mater, 1995, 6:997–1000.
[45]CAO X Q. Application of rare earths in thermal barrier coating materials[J]. J Mater Sci Technol, 2007, 283(1):15–35.
[46]LIANG B, DING C. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying[J]. Surf Coat Technol, 2005, 197:185–192.
[47]WANG W Q, SHA C K, SUN D Q, et al. Microstructural feature,thermal shock resistance and isothermal oxidation resistance of nanostructured zirconia coating[J]. Mater Sci Eng A, 2006, 424:1–5.
[48]JAMALIN H, MOZAFARINIA R, RAZAVI R S, et al. Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J].Ceram Inter, 2012, 38:6705–6712.
[49]RANGARAJ S, KOKINI K. Fracture in single-layer zirconia(YSZ)-bond coat alloy(NiCoCrAlY)composite coatings under thermal shock[J]. Acta Mater, 2004, 52(2):455–465.
[50]RANGARAJ S, KOKINI K. Multiple surface cracking and its effect on interface cracks in functionally graded thermal barrier coatings under thermal shock[J]. J Appl Mech(ASME), 2003, 70(2):234–245.
[51]LIU C B, ZHANG Z M, JIANG X L, et al. Comparison of thermal shock behaviors zirconia thermal barrier coatings[J]. Trans Nonferrous Met Soc China, 2009, 19(1):99–107.
[52]ZHOU C, WANG N, WANG Z, et al. Thermal cycling life and thermal diffusivity of a plasma-sprayed nanostructured thermal barrier coating[J]. Scripta Mater, 2004, 51:945–948.
[53]ZHOU C G, WANG N, XU H B. Comparison of thermal cycling behavior of plasma sprayed nanostructured and traditional thermal barrier coatings[J]. Mater Sci Eng A, 2007, 452–453:569–574.
[54]CHEN H, ZHOU X M, DING C X. Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating[J]. J Eur Ceram Soc, 2003, 23:1449–1455.
[55]DAHOTRE N B, NAYAK S. Nanocoatings for engine application[J].Surf Coat Technol, 2005, 194:58–67.
[56]LIMA R S, MARPLE B R. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects[J]. Mater Sci Eng A,2008, 485(1–2):182–193.
[57]KEYVANI A, SAREMI M, HEYDARZADEH SOHI M, et al. A comparison on thermomechanical properties of plasma-sprayed conventional and nanostructured YSZ TBC coatings in thermal cycling[J]. J Alloy Compd, 2012, 541:488–494.
[58]WU J, GUO H, ZHOU L, et al. Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ[J].J Therm Spray Technol, 2010, 19(6):1186–1194.
[59]JAMALI H, MOZAFARINIA R, SHOJA RAZAVI R, et al.Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings[J]. Curr Nanosci, 2012,8(3):402–409.
[60]GONG W B, SHA C K, SUN D Q, et al. Microstructures and thermal insulation capability of plasma-sprayed nanostructured ceria stabilized zirconia coatings[J]. Surf Coat Technol, 2006, 201:3109–3115.
[61]LIMA R S, MARPLE B R. Toward highly sintering-resistant nanostructured Zr O2-7wt%Y2O3 coatings for TBC applications by employing differential sintering[J]. J Therm Spray Technol, 2008,17(5–6):846–852.
[62]DAROONPARVAR M, YAJID M A M, YUSOF N M, et al.Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones[J]. J Rare Earths, 2014, 32(10):989–1002.
[63]DAROONPARVAR M, YAJID M A M, YUSOF N M, et al. Effect of Y2O3 stabilized Zr O2 coating with tri-model structure on bi-layered thermally grown oxide evolution in nano thermal barrier coating systems at elevated temperatures[J]. J Rare Earths, 2014, 32(1):57–77.
[64]LIMA R S, KUCUK A, BERNDT C C. Integrity of nanostructured partially stabilized zirconia after plasma spray processing[J]. Mater Sci Eng A, 2001, 313(1–2):75–82.
[65]SOLTANI R, GARCIA E, COYLE T W, et al. Thermo-mechanical behavior of nanostructured plasma sprayed zirconia coatings[J]. J Therm Spray Technol, 2006, 15(4):657–662.
[66]SRDIC V V, WINTERER M, HAHN H. Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis[J]. J Am Ceram Soc, 2000, 83:1853–1860.
[67]LIANG B, DING C, LIAO H, et al. Phase composition and stability of nanostructured 4.7wt.%yttria-stabilized zirconia coatings deposited by atmospheric plasma spraying[J]. Surf Coat Technol, 2006, 200,4549–4556.
[68]RACEK O, BERNDT C C, GURU D N, et al. Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques[J]. Surf Coat Technol, 2006, 201:338–346.
[69]WANG J S, SUN J B, ZHANG H, et al. Effect of spraying power on microstructure and property of nanostructured YSZ thermal barrier coatings[J]. J Alloy Compd, 2018, 730:471–482.
[70]CHEN T, HUI Y, XU J Y, et al. Effect of heat treatment of nano 8YSZ powder on the thermal shock lifetime of the plasma sprayed coating[J].J Rare Earth(in Chinese), 2016, 34(2):189–198.
[71]BAI Y, TANG J J, QU Y M, et al. Influence of original powders on the microstructure and properties of thermal barrier coatings deposited by supersonic atmospheric plasma spraying, Part I:Microstructure[J].Ceram Inter, 2013, 39:5113–5124.
[72]BAI Y, ZHAO L, TANG J J, et al. Influence of original powders on the microstructure and properties of thermal barrier coatings deposited by supersonic atmospheric plasma spraying, Part II:Properties[J].Ceram Inter, 2013, 39:4437–4448.
[73]CAO Q, YUAN J Y, WANG J S, et al. Formation mechanism of corrosion spots on thermal barrier coatings[J]. Therm Spray Technol(in Chinese), 2019, 11(1):9–22, 28.
[74]MAUER G, JARLIGO M O, MACK D E, et al. Plasma-sprayed thermal barrier coatings:New materials, processing issues, and solutions[J]. J Therm Spray Technol, 2013, 22(5):646–658.
[75]SCHULZ U, SARUHAN B, FRITSCHER K, et al. Review on advanced EB-PVD ceramic topcoats for TBC applications[J]. Inter J Appl Ceram Technol, 2004, 1(4):302–315.
[76]SARUHAN B, FRANCOIS P, FRITSCHER K, et al. EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs[J]. Surf Coat Technol, 2004, 182:175–183.
[77]BOBZIN K, LUGSCHEIDER E, BAGCIVAN N. Thermal cycling behaviour of lanthanum zirconate as EB-PVD thermal barrier coating[J]. Adv Eng Mater, 2006, 8(7):653–657.
[78]XU Z H, ZHONG X H, ZHANG J F, et al. Effects of deposition conditions on composition and thermal cycling life of lanthanum zirconate coatings[J]. Surf Coat Technol, 2008, 202:4714–4720.
[79]FABRICHNAYA O, WULF R, KRIEGEL M J, et al. Thermophysical properties of pyrochlore and fluorite phases in the Ln2Zr2O7-Y2O3systems(Ln=La, Nd, Sm):1. Pure pyrochlores and phases in the La2Zr2O7-Y2O3 system[J]. J Alloy Compd, 2014, 586:118–128.
[80]LI J Y, DAI H, ZHONG X H, et al. Lanthanum zirconate ceramic toughened by BaTiO3 secondary phase[J]. J Alloy Compd, 2008, 452:406–409.
[81]LI J Y, DAI H, ZHONG X H, et al. Effect of the addition of YAG(Y3Al5O12)nanopowder on the mechanical properties of lanthanum zirconate[J]. Mater Sci Eng A-Struct Mater Prop Microstruct Proc, 2007, 460:504–508.
[82]WANG Y F, XIAO P. The phase stability and toughening effect of3Y-TZP dispersed in the lanthanum zirconate ceramics[J]. Mater Sci Eng, 2014, 604:34–39.
[83]XU Z H, HE L M, MU R D, et al. Influence of the deposition energy on the composition and thermal cycling behavior of La2(Zr0.7Ce0.3)2O7coatings[J]. J Eur Ceram Soc, 2009, 29:1771–1779.
[84]XU Z H, HE L M, MU R D, et al. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings[J]. Surf Coat Technol, 2010, 204:3652–3661.
[85]ZHOU X, ZOU B L, HE L M, et al. Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures[J].Corros Sci, 2015, 100:566–578.
[86]ZHOU X, HE L M, CAO X Q, et al. La2(Zr0.7Ce0.3)2O7 thermal barrier coatings prepared by electron beam-physical vapor deposition that are resistant to high temperature attack by molten silicate[J]. Corros Sci,2017, 115:143–151.
[87]ZHOU X, WANG J S, YUAN J Y, et al. Calcium-magnesiumalumino-silicate induced degradation and failure of La2(Zr0.7Ce0.3)2O7/YSZ double-ceramic-layer thermal barrier coatings prepared by electron beam-physical vapor deposition[J]. J Eur Ceram Soc, 2018, 38:1897–1907.
[88]FRIEDRICH C, GADOW R, SCHIMER T. Lanthanum hexaaluminate—A new material for atmospheric plasma spraying of advanced thermal barrier coatings[J]. J Therm Spray Technol, 2001,10(4):592–598.
[89]CAO X Q, ZHANG Y F, ZHANG J F, et al. Failure of the plasma-sprayed coating of lanthanum hexaluminate[J]. J Eur Ceram Soc, 2008, 28(6–7):1979–1986.
[90]CHEN X L, ZHAO Y, HUANG W Z, et al. Thermal aging behavior of plasma sprayed LaMgAl11O19 thermal barrier coating[J]. J Eur Ceram Soc, 2011, 31:2285–2294.
[91]CHEN X L, ZHANG Y F, ZHONG X H, et al. Thermal cycling behaviors of plasma sprayed thermal barrier coatings with magnetoplumbite structure[J]. J Eur Ceram Soc, 2010, 30(7):1649–1657.
[92]ZHANG J F, ZHONG X H, CHENG Y L, et al. Thermal-shock resistance of LnMgAl11O19(Ln=La, Nd, Sm, Gd)with magnetoplumbite structure[J]. J Alloy Compd, 2009, 482:376–381.
[93]WANG Y H, OUYANG J H, LIU Z G. Influence of dysprosium oxide doping on thermophysical properties of La MgAl11O19 ceramics[J].Mater Des, 2010, 31:3353–3357.
[94]JIANG B, FANG M H, HUANG Z H, et al. Mechanical and thermal properties of LaMgAl11O19[J]. Mater Res Bull, 2010, 45:1506–1508.
[95]MA W, JARLIGO M, MACK D, et al. New generation perovskite thermal barrier coating materials[J]. J Therm Spray Technol, 2008, 17:831–837.
[96]VASSEN R, KASSNER H, STUKE A, et al. Functionally graded thermal barrier coatings with improved reflectivity and high-temperature capability[J]. Mater Sci Forum, 2010, 631:73–78.
[97]VASSEN R, JARLIGO M O, STEINKE T, et al. Overview on advanced thermal barrier coatings[J]. Surf Coat Technol, 2010, 205:938–942.
[98]JARLIGO M O, MAUER G, SEBOLD D, et al. Decomposition of Ba(Mg1/3Ta2/3)O3 perovskite during atmospheric plasma spraying[J].Surf Coat Technol, 2012, 206:2515–2520.
[99]TAYMAZ I. The effect of thermal barrier coatings on diesel engine performance[J]. Surf Coat Technol, 2007, 201:5249–5252.
[100]CANO C, OSENDI M I, BELMONTE M, et al. Effect of the type of flame on the microstructure of CaZrO3 combustion flame sprayed coatings[J]. Surf Coat Technol, 2006, 201:3307–3313.
[101]BUYUKKAYA E, ENGIN T, CERIT M. Effects of thermal barrier coating on gas emissions and performance of a LHR engine with different injection timings and valve adjustments[J]. Energ Convers Manage, 2006, 47(9–10):1298–1310.
[102]CAO Xueqiang. Development of new thermal barrier coating materials for gas turbines[D]. Juelich:Forschungszentrum Juelich GmbH, 2003.
[103]MERCER C, WILLIAMS J R, CLARKE D R, et al. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime(t')yttria-stabilized zirconia[J]. Proc Roy Soc A-Math Phys Eng Sci, 2007,463(2081):1393–1408.
[104]HAN M, HUANG J H, CHEN S H. Behavior and mechanism of the stress buffer effect of the inside ceramic layer to the top ceramic layer in a double-ceramic-layer thermal barrier coating[J]. Ceram Inter, 2014,40:2901–2914.
[105]HAN M, HUANG J H, CHEN S H. A parametric study of the double-ceramic-layer thermal barrier coating, Part II:Optimization selection of mechanical parameters of the inside ceramic layer based on the effect on the stress distribution[J]. Surf Coat Technol, 2014, 238:93–117.
[106]WANG L, WANG Y, SUN X G, et al. Finite element simulation of residual stress of double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings using birth and death element technique[J]. Comp Mater Sci,2012, 53:117–127.
[107]XU Z H, HE L M, CHEN X L, et al. Thermal cycling behavior of La2Zr2O7 coating with the addition of Y2O3 by EB-PVD[J]. J Alloy Compd, 2010, 508:85–93.
[108]XU Z H, HE L M, MU R D, et al. Thermal cycling behavior of YSZ and La2(Zr0.7Ce0.3)2O7 as double-ceramic-layer systems EB-PVD TBCs[J]. J Alloy Compd, 2012, 525:87–96.
[109]XU Z H, HE L M, ZHAO Y, et al. Composition, structure evolution and cyclic oxidation behavior of La2(Zr0.7Ce0.3)2O7 EB-PVD TBCs[J].J Alloy Compd, 2010, 491(1–2):729–736.
[110]XU Z H, HE L M, MU R D, et al. Double-ceramic-layer thermal barrier coatings based on La2(Zr0.7Ce0.3)2O7/La2Ce2O7 deposited by electron beam-physical vapor deposition[J]. Appl Surf Sci, 2010,256(11):3661–3668.
[111]DONG H Y, WANG D X, PEI Y L, et al. Optimization and thermal cycling behavior of La2Ce2O7 thermal barrier coatings[J]. Ceram Inter,2013, 39:1863–1870.
[112]MA W, GONG S K, LI H F, et al. Novel thermal barrier coatings based on La2Ce2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition[J]. Surf Coat Technol, 2008,202:2704–2708.
[113]MA W, DONG H Y, GUO H B, et al. Thermal cycling behavior of La2Ce2O7/8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying[J]. Surf Coat Technol, 2010,204:3366–3370.
[114]GUO H B, WANG Y, WANG L, et al. Thermo-physical properties and thermal shock resistance of segmented La2Ce2O7/YSZ thermal barrier coatings[J]. J Therm Spray Technol, 2009, 18(4):665–671.
[115]CHEN X L, ZHAO Y, FAN X Z, et al. Thermal cycling failure of new La MgAl11O19/YSZ double ceramic top coat thermal barrier coating systems[J]. Surf Coat Technol, 2011, 205:3293–3300.
[116]SUN Junbing. Failure mechanism of rare earth hexaaluminate thermal barrier coatings(in Chinese, dissertation). Wuhan:Wuhan University of Technology, 2018.
[117]ABBAS M, GUO L, GUO H B. Evaluation of stress distribution and failure mechanism in lanthanum-titanium-aluminum oxides thermal barrier coatings[J]. Ceram Inter, 2013, 39:5103–5111.
[118]XIE X Y, GUO H B, GONG S K. Mechanical properties of La Ti2Al9O19 and thermal cycling behaviors of plasma-sprayed La Ti2Al9O19/YSZ thermal barrier coatings[J]. J Therm Spray Technol,2010, 19(6):1179–1185.
[119]XIE X Y, GUO H B, GONG S K, et al. Hot corrosion behavior of double-ceramic-layer La Ti2Al9O19/YSZ thermal barrier coatings[J].Chinese J Aeronaut, 2012, 25:137–142.
[120]XIE X Y, GUO H B, GONG S K, et al. Thermal cycling behavior and failure mechanism of La Ti2Al9O19/YSZ thermal barrier coatings exposed to gas flame[J]. Surf Coat Technol, 2011, 205:4291–4298.
[121]XIE X Y, GUO H B, GONG S K, et al. Lanthanum-titanium-aluminum oxide:A novel thermal barrier coating material for applications at1300℃[J]. J Eur Ceram Soc, 2011, 31:1677–1683.
[122]VASSEN R, STUKE A, STOVER D. Recent developments in the field of thermal barrier coatings[J]. J Therm Spray Technol, 2009, 18(2):181–186.
[123]JARLIGO M O, MACK D E, MAUER G, et al. Atmospheric plasma spraying of high melting temperature complex perovskites for TBC application[J]. J Therm Spray Technol, 2010, 19(1–2):303–310.
[124]ZHANG Yanfei. Study on plasma spraying of rare earth hexaaluminate and strontium zirconate(in Chinese, dissertation). Changchun:Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 2010.
[125]SCHLEGEL N, SEBOLD D, SOHN Y J, et al. Cycling performance of a columnar-structured complex perovskite in a temperature gradient test[J]. J Therm Spray Technol, 2015, 24(7):1205–1212.
基本信息:
DOI:10.14062/j.issn.0454-5648.20200287
中图分类号:TB306
引用信息:
[1]曹学强.新型热障涂层材料研究进展(英文)[J].硅酸盐学报,2020,48(10):1622-1635.DOI:10.14062/j.issn.0454-5648.20200287.
基金信息:
国家科技重大专项(2017-VI-0010-0081);; 中央高校基本科研业务费专项资金(203134004)