广东省科学院工业分析检测中心;暨南大学化学与材料学院;
随着太阳能广泛应用,寻找优良的光电转换材料一直为太阳能研究的重点。通过模板法和溶胶凝胶法在氟掺杂氧化锡上组装二氧化钛反蛋白石光子晶体,再在其晶体骨架低温沉积无定形二氧化钛形成无定型二氧化钛修饰的二氧化钛反蛋白石光子晶体电极。采用X射线衍射仪、X射线光电子能谱及扫描电子显微镜进行晶型、禁带及形貌表征;对电极进行光电流测试,并探讨了光电流增强原理。结果证明经过无定形二氧化钛修饰的二氧化钛反蛋白石光子晶体电极,不仅具有高比表面积,还降低了光生电子空穴的复合,使得电极光电流达到600 nA,比未修饰前提高了4倍。为基于非晶二氧化钛光电转换材料的应用提供了新思路。
315 | 0 | 95 |
下载次数 | 被引频次 | 阅读次数 |
[1] ZANG Y, LEI J P, JU H X. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures[J]. Biosens Bioelectron, 2017, 96:8–16.
[2] KONG Y, CAI Z R, CHEN S Z, et al. Small molecule probes as versatile energy acceptors:A breakthrough in photoelectrochemical sensing for sulfur dioxide recording in rat brain[J]. Biosens Bioelectron,2024, 243:115760.
[3] LIU T Y, LIU B, YANG L F, et al. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability[J]. Appl Catal B Environ, 2017, 204:593–601.
[4] LEI M, WANG N, ZHU L H, et al. Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2nanocomposites:A mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper[J]. Appl Catal B Environ, 2016, 182:414–423.
[5] LU S C, YAO X, CHENG Y, et al. Recent developments and challenges for volatile organic compounds control by the synergistic of adsorption and photocatalysis[J]. Appl Catal O Open, 2024, 193:206975.
[6] XU L, AUMAITRE C, KERVELLA Y, et al. Increasing the efficiency of organic dye-sensitized solar cells over 10.3%using locally ordered inverse opal nanostructures in the photoelectrode[J]. Adv Funct Mater,2018, 28(15):1706291.
[7] TUMRAM P V, NAFDEY R, KAUTKAR P R, et al. Solar cell performance enhancement using nanostructures[J]. Mater Sci Eng B,2024, 307:117504.
[8] BOPPELLA R, KOCHUVEEDU S T, KIM H, et al.Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting[J]. ACS Appl Mater Interfaces, 2017, 9(8):7075–7083.
[9] SELVARAJ P, ROY A, ULLAH H, et al. Soft-template synthesis of high surface area mesoporous titanium dioxide for dye-sensitized solar cells[J]. Int J Energy Res, 2019, 43(1):523–534.
[10] CHEN Z Y, FANG L, DONG W, et al. Inverse opal structured Ag/TiO2plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity[J]. J Mater Chem A, 2014,2(3):824–832.
[11] AKBARI A, ARVAND M, HEMMATI S. A new signal-on photoelectrochemical sensor for glutathione monitoring based on polythiophene/graphitic carbon nitride coated titanium oxide nanotube arrays[J]. J Electroanal Chem, 2019, 848:113271.
[12] MAHADIK M A, SHINDE P S, CHO M, et al. Fabrication of a ternary CdS/ZnIn2S4/TiO2 heterojunction for enhancing photoelectrochemical performance:Effect of cascading electron–hole transfer[J]. J Mater Chem A, 2015, 3(46):23597–23606.
[13] CHANDRA M, BHUNIA K, PRADHAN D. Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting[J]. Inorg Chem, 2018, 57(8):4524–4533.
[14] YU J, LEI J Y, WANG L Z, et al. TiO2 inverse opal photonic crystals:Synthesis, modification, and applications–A review[J]. J Alloys Compd,2018, 769:740–757.
[15] BAYAT F, AHMADIAN KORDASHT S, AMANI-GHADIM A R, et al.Structural, morphological, and optical analysis of TiO2 inverse opals prepared under different synthesis conditions[J]. Mater Chem Phys,2023, 299:127514.
[16] LOURDU MADANU T, CHAABANE L, MOUCHET S R, et al.Manipulating multi-spectral slow photons in bilayer inverse opal TiO2@Bi VO4 composites for highly enhanced visible light photocatalysis[J]. J Colloid Interface Sci, 2023, 647:233–245.
[17] ZHAO H, HU Z Y, LIU J, et al. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals[J]. Nano Energy, 2018, 47:266–274.
[18] ZHANG X, LIU Y, LEE S T, et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2photonic crystals for synergistically enhanced photoelectrochemical water splitting[J]. Energy Environ Sci, 2014, 7(4):1409–1419.
[19] CHEN X, LI J, PAN G C, et al. Ti3C2 MXene quantum dots/TiO2inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing[J]. Sens Actuat B Chem, 2019, 289:131–137.
[20] RIEDEL M, PARAK W J, RUFF A, et al. Light as trigger for biocatalysis:Photonic wiring of flavin adenine dinucleotide-dependent glucose dehydrogenase to quantum dot-sensitized inverse opal Ti O2architectures via redox polymers[J]. ACS Catal, 2018, 8(6):5212–5220.
[21] HAO L, TANG S Q, YAN J C, et al. Solar-responsive photocatalytic activity of amorphous TiO2 nanotube-array films[J]. Mater Sci Semicond Process, 2019, 89:161–169.
[22] JIA H B, SHANG H, HE Y, et al. Engineering the defect distribution via boron doping in amorphous TiO2 for robust photocatalytic NO removal[J]. Appl Catal B Environ Energy, 2024, 356:124239.
[23] SANTOS J S, FEREIDOONI M, MáRQUEZ V, et al. Photoactivity of amorphous and crystalline TiO2 nanotube arrays(TNA)films in gas phase CO2 reduction to methane with simultaneous H2 production[J].Environ Res, 2024, 244:117919.
[24] Wang J X, Wen Y Q, Ge H L, et al. Simple fabrication of full color colloidal crystal films with tough mechanical strength[J]. Macromol Chem Phys, 2006, 207(6):596–604.
[25] LIANG Z Q, BAI X J, HAO P, et al. Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes[J].Appl Catal B Environ, 2019, 243:711–720.
[26] LI S P, LIU C L, CHEN P, et al. In-situ stabilizing surface oxygen vacancies of TiO2 nanowire array photoelectrode by N-doped carbon dots for enhanced photoelectrocatalytic activities under visible light[J].J Catal, 2020, 382:212–227.
[27] JIA S F, LI X Y, ZHANG B P, et al. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation:The role of CuS[J]. Appl Surf Sci, 2019, 463:829–837.
基本信息:
DOI:10.14062/j.issn.0454-5648.20240497
中图分类号:TQ134.11;O734
引用信息:
[1]蒋佳洁,谢新媛,李风煜.无定形二氧化钛修饰二氧化钛光子晶体电极及其光电性能[J].硅酸盐学报,2025,53(01):95-101.DOI:10.14062/j.issn.0454-5648.20240497.
基金信息:
国家自然科学基金(22474049)