445 | 3 | 212 |
下载次数 | 被引频次 | 阅读次数 |
采用柠檬酸络合法制备了(Sc2O3)0.06(Al2O3)x(ZrO2)0.94–x(x=0,0.005,0.01,0.02)系列电解质材料。通过X射线衍射、扫描电子显微镜、电化学交流阻抗谱和力学性能测试等方法对试样进行了分析,并研究了Al2O3掺杂量对电解质材料性能的影响。结果表明:Al2O3掺杂能很好的促进电解质的烧结,有效的降低晶界电阻并提高其抗弯强度。当Sc2O3和Al2O3掺杂量分别为6%和1%摩尔分数时,800℃时氧离子电导率为0.050 S/cm,室温抗弯强度达912 MPa。采用厚度为120μm该电解质片做支撑的电池在800℃最高功率密度为0.43 W/cm2,且在0.625 A/cm2恒流放电200 h后该电池性能没有衰减。
Abstract:The(Sc2O3)0.06(Al2O3)x(ZrO2)0.94–x(x=0, 0.005, 0.01, 0.02) series powders were prepared via a nitrate-citrate route. The obtained electrolyte material samples were characterized by X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy and mechanical test, and the effect of Al2O3-doping on the properties of the electrolyte materials was investigated. The results indicate that the Al2O3-doping can promote the sintering of the electrolyte material, reduce the resistance of the grain boundaries and improve the flexural strength. When the Al2O3-doped amount is 1% in mole, the ionic conductivity of the(Sc2O3)0.06(Al2O3)0.01(Zr O2)0.93 sample is 0.05 S/cm at 800 ℃ and the flexural strength is 912 MPa at room temperature. The optimum power density measured at 800 ℃ is 0.43 W/cm2 for the cell with this material as an electrolyte, and little degradation is discovered after 200 h test under a constant current discharge of 0.625 A/cm2.
[1]WILLIAMS M C.Solid oxide fuel cells:fundamentals to systems[J].Fuel Cells,2007,7(1):78–85.
[2]IVERS-TIFFéE E,WEBER A,HERBSTRITT D.Materials and technologies for SOFC-components[J].J Eur Ceram Soc,2001,21(10):1805–1811.
[3]YOKOKAWA H,SAKAI N,HORITA T,et al.Recent developments in solid oxide fuel cell materials[J].Fuel cells,2001,1(2):117–131.
[4]黄晓巍,刘旭俐,李湘祁,等.氧化锆基固体电解质的研究进展[J].硅酸盐学报,2008,36(11):1669–1675.HUANG Xiaowei,LIU Xuli,LI Xiangqi,et al.J Chin Ceram Soc,2008,36(11):1669–1675.
[5]STAFFORD R J,ROTHMAN S J,ROUTBORT J L.Effect of dopant size on the ionic conductivity of cubic stabilised Zr O2[J].Solid State Ionics,1989,37(1):67–72.
[6]ZACATE M O,MINERVINI L,BRADFIELD D J,et al.Defect cluster formation in M2O3-doped cubic Zr O2[J].Solid State Ionics,2000,128(1):243–254.
[7]ARACHI Y,SAKAI H,YAMAMOTO O,et al.Electrical conductivity of the Zr O2–Ln2O3(Ln=lanthanides)system[J].Solid State Ionics,1999,121(1):133–139.
[8]BADWAL S P S,CIACCHI F T,MILOSEVIC D.Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation[J].Solid State Ionics,2000,136:91–99.
[9]MIZUTANI Y,HISADA K,UKAI K,et al.From rare earth doped zirconia to 1k W solid oxide fuel cell system[J].J Alloy Compd,2006,408:518–524.
[10]YAMAMOTO O,TAKEDA Y,KANNO R,et al.Electrical conductivity of tetragonal stabilized zirconia[J].J Mater Sci,1990,25(6):2805–2808.
[11]DU K,KIM C H,HEUER A H,et al.Structural evolution and electrical properties of Sc2O3–stabilized Zr O2 aged at 850℃in air and wet–forming gas ambient[J].J Am Ceram Soc,2008,91(5):1626–1633.
[12]VARANASI C,JUNEJA C,CHEN C,et al.Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia[J].J Power Sources,2005,147(1):128–135.
[13]KOVALEVSKY A V,MARQUES F M B,KHARTON V V,et al.Silica-scavenging effect in zirconia electrolytes:assessment of lanthanum silicate formation[J].Ionics,2006,12(3):179–184.
[14]LYBYE D,Liu Y L.A study of complex effects of alumina addition on conductivity of stabilised zirconia[J].J Eur Ceram Soc,2006,26(4):599–604.
[15]GUO C X,WANG J X,HE C R,et al.Effect of alumina on the properties of ceria and scandia co-doped zirconia for electrolytesupported SOFC[J].Ceram Int,2013,39(8):9575–9582.
[16]MORI M,ABE T,ITOH H,et al.Cubic-stabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel cells[J].Solid State Ionics,1994,74(3):157–164.
[17]NAVARRO L M,RECIO P,JURADO J R,et al.Preparation and properties evaluation of zirconia-based/Al2O3 composites as electrolytes for solid oxide fuel cell systems[J].J Mater Sci,1995,30(8):1949–960.
[18]CHOI S R,BANSAL N P.Mechanical behavior of zirconia/alumina composites[J].Ceram Int,2005,31(1):39–46.
[19]VERKERK M J,WINNUBST A J A,BURGGRAAF A J.Effect of impurities on sintering and conductivity of yttria-stabilized zirconia[J].J Mater Sci,1982,17(11):3113–3122.
[20]SRINIVASAN R,SIMPSON S F,HARRIS J M,et al.Discrepancies in the crystal structures assigned to precipitated zirconia[J].J Mater Sci Lett,1991,10(6):352–354.
[21]GUO X,TANG C Q,YUAN R Z.Grain boundary ionic conduction in zirconia-based solid electrolyte with alumina addition[J].J Eur Ceram Soc,1995,15(1):25–32.
[22]FEIGHERY A J,IRVINE J T S.Effect of alumina additions upon electrical properties of 8 mol%yttria-stabilised zirconia[J].Solid State Ionics,1999,121(1):209–216.
[23]KILNER J A,BROOK R J.A study of oxygen ion conductivity in doped non-stoichiometric oxides[J].Solid State Ionics,1982,6(3):237–252.
[24]GUO X,MAIER J.Grain boundary blocking effect in zirconia:a Schottky barrier analysis[J].J Electrochem Soc,2001,148(3):E121–E126.
[25]GUO X,SIGLE W,FLEIG J,et al.Role of space charge in the grain boundary blocking effect in doped zirconia[J].Solid State Ionics,2002,154:555–561.
[26]LEE J H,MORI T,LI J G,et al.Imaging secondary–ion mass spectroscopy observation of the scavenging of siliceous film from8mol%yttria stabilized zirconia by the addition of alumina[J].J Am Ceram Soc,2000,83(5):1273–1275.
[27]PARK H J,CHOA Y H.The grain boundary conduction property of highly dense and nanostructured yttrium-doped zirconia[J].Electrochem Solid-State Lett,2010,13(5):K49–K52.
[28]CHERVIN C N,CLAPSADDLE B J,CHIU H W,et al.Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route[J].Chem Mater,2005,17(13):3345–3351.
[29]ADAMS J W,RUH R,MAZDIYASNI K S.Young's modulus,flexural strength,and fracture of yttria–stabilized zirconia versus temperature[J].J Am Ceram Soc,1997,80(4):903–908.
[30]KISHIMOTO A,ITO M,FUJITSU S.Microwave sintering of ion conductive zirconia based composite dispersed with alumina[J].J Mater Sci Lett,2001,20(10):943–945.
基本信息:
DOI:10.14062/j.issn.0454-5648.2015.01.01
中图分类号:TM911.4;O611.4
引用信息:
[1]郭存心,王蔚国,何长荣等.高强度钪铝共掺杂氧化锆电解质材料制备与性能[J],2015,43(01):1-7.DOI:10.14062/j.issn.0454-5648.2015.01.01.
基金信息:
国家高技术研究发展计划(863计划,2011AA050703)项目