nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 06, v.52;No.423 1810-1819
火焰法与喷雾干燥法共合成固体氧化物燃料电池阴极La0.6Sr0.4CoO3–δ–Ce0.8Gd0.2O2–δ的微观结构与性能分析
基金项目(Foundation): 上海市市级科技重大专项;; 上海市基础研究试点项目(21ZQ1400207);; 上海市科技创新行动计划(21DZ1206400)
邮箱(Email):
DOI: 10.14062/j.issn.0454-5648.20240112
摘要:

实现阴极结构的纳米化以提升电极三相界面长度,是提升固体氧化物燃料电池(SOFC)性能的有效途径。基于火焰喷雾热解法和喷雾干燥法,分别一步法合成纳米级和亚微米级的La0.6Sr0.4CoO3–δ–Ce0.8Gd0.2O2–δ复相材料。将2种粒径范围材料按照不同质量比混合,制成氧化钇部分稳定氧化锆电解质支撑的固体氧化物燃料电池的阴极,并系统分析电池性能与结构特征。结果表明,喷雾干燥合成材料与火焰喷雾热解合成材料的质量比为70:30时,SOFC电化学性能最优,850℃时最大功率密度为0.47 W/cm2,面电阻为0.62?·cm2,相应的欧姆阻抗和极化阻抗为0.36?·cm2和0.26?·cm2。实验证明,混合不同粒径颗粒制成的SOFC阴极,可有效构建电子–离子导通网络,并形成更多的三相界面和反应活性位点,从而获得较好的电化学性能。本研究为固体氧化物燃料电池阴极材料微观结构和性能优化提供了新的思路。

Abstract:

Introduction Optimizing the nanostructure of the cathode is an effective approach to enhance the performance of solid oxide fuel cells at a triple-phase boundary (TPB).The most commonly used method is an impregnation method,which can produce nano-sized particles on the cathode framework structure.However,it is not able to achieve the related large-scale application due to its laborious preparation process and unstable performance.In this paper,nano-sized and submicron-sized composite powders of La0.6Sr0.4Co O3-δ-Ce0.8Gd0.2O2-δ (LSC-GDC) were synthesized by flame spray pyrolysis (FSP) and spray drying (SD) methods for the preparation of cathode,respectively.Methods A uniform submicron-sized LSC-GDC composite powder was prepared by SD with a solution of metal nitrates as a precursor solution.Also,a uniform nano-sized LSC-GDC composite powder was directly synthesized by FSP with a solution of metal acetates as a precursor solution.The submicron-sized and nano-sized powders were blended in different mass ratios (i.e.,100:0,90:10,80:20,70:30,60:40,50:50,and 40:60) to produce cathode slurries.These slurries were then screen-printed onto the button cells of NiO-GDC|GDC|3YSZ|GDC|LSC-GDC|LSC structure with an effective electrode area of approximately 0.5 cm2.The voltammetric characteristics of the cells were tested by an electrochemical workstation.The electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS) at open circuit voltage (OCV),and the impedance spectra were analyzed via distribution of relaxation time (DRT) analysis.Results and discussion Nano-sized particles synthesized by FSP and submicron-sized particles synthesized by SD can be distinguished via microscopic analysis.In addition,the fine particles are evenly distributed around the coarse particles,having a porous structure that meets an expected cathode microstructure.Under the experimental conditions,the overall ohmic impedance and polarization impedance both increase and then decrease as the proportion of nano-sized particles increases.The cathode performance is optimal when a mass ratio of SD powder:flame FSP powder is 70:30.Under SOFC mode at 850℃,the maximum power density of the button cell is 0.47 W/cm2,with an area specific resistance of 0.62?·cm2.The corresponding ohmic impedance and polarization impedance values are 0.36?·cm2 and 0.26?·cm2,respectively.Combined with the results by DRT analysis,the doping of an appropriate amount of nano-sized powder significantly enhances the cathode O2 reduction reaction (ORR) process and cathode oxygen diffusion process.Conclusions Nano-sized and submicron-sized LSC-GDC composite materials were prepared by FSP and SD as one-pot methods,respectively.The feasibility of these two approaches for the large-scale preparation of SOFC cathode powders was investigated.The results showed that incorporating an appropriate amount of nano-sized powder into the submicron-sized powder for the preparation of the cathode could effectively enhance the cell performance.

参考文献

[1] XIANG L K, CHU H Q, REN F, et al. Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames[J]. J Energy Inst, 2019, 92(5):1487–1501.

[2] REN F, XIANG L K, CHU H Q, et al. Modeling study of the impact of blending N2, CO2, and H2O on characteristics of CH4 laminar premixed combustion[J]. Energy Fuels, 2020, 34(2):1184–1192.

[3] GAO Z, CHENG X G, REN F, et al. Compositional effects on sooting tendencies of diesel surrogate fuels with four components[J]. Energy Fuels, 2020, 34(7):8796–8807.

[4] ZOU X Y, MA C, LI A, et al. Nanoparticle-assisted Ni–co binary single-atom catalysts supported on carbon nanotubes for efficient electroreduction of CO2 to syngas with controllable CO/H2 ratios[J].ACS Appl Energy Mater, 2021, 4(9):9572–9581.

[5] HUANG Z, ZHU L, LI A, et al. Renewable synthetic fuel:Turning carbon dioxide back into fuel[J]. Front Energy, 2022, 16(2):145–149.

[6] HAUCH A, KüNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020,370(6513):eaba6118.

[7]张婉晨,吕秋秋,朱腾龙,等. Co掺杂Sr0.95Ti0.4Fe0.6O3–δ阳极SOFC制备及在掺氢天然气下的性能[J].硅酸盐学报, 2024, 52(1):1–8.ZHANG Wanchen, LV Qiuqiu, ZHU Tenglong, et al. J Chin Ceram Soc, 2024, 52(1):1–8.

[8]倪维婕,朱腾龙,陈晓阳,等. Co/Ni掺杂SrTi0.3Fe0.7O3–δ钙钛矿电极材料制备及性能[J].硅酸盐学报, 2019, 47(3):313–319.NI Weijie, ZHU Tenglong, CHEN Xiaoyang, et al. J Chin Ceram Soc,2019, 47(3):313–319.

[9]宋明,胡佳旺,蒋文春,等.小冲杆试验评价固体氧化物燃料电池Ni O–YSZ阳极机械强度[J].硅酸盐学报, 2024, 52(1):9–18.SONG Ming, HU Jiawang, JIANG Wenchun, et al. J Chin Ceram Soc,2024, 52(1):9–18.

[10] CONNOR P A, YUE X L, SAVANIU C D, et al. Tailoring SOFC electrode microstructures for improved performance[J]. Adv Energy Mater, 2018, 8(23):1800120.

[11] PARK B K, BARNETT S A. Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration[J]. J Mater Chem A, 2020, 8(23):11626–11631.

[12]王玲玲,邵伟,韩飞,等.钙钛矿复合氧化物催化剂研究进展[J].硅酸盐学报, 2024, 52(1):305–321.WANG Lingling, SHAO Wei, HAN Fei, et al. J Chin Ceram Soc, 2024,52(1):305–321.

[13] BI Z H, CHENG M J, DONG Y L, et al. Electrochemical evaluation of La0.6Sr0.4CoO3–La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2–La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells[J]. Solid State Ion, 2005, 176(7–8):655–661.

[14] RIED P, BUCHER E, PREIS W, et al. Characterisation of La0.6Sr0.4Co0.2Fe0.8O3–d and Ba0.5Sr0.5Co0.8Fe0.2O3–d as cathode materials for the application in intermediate temperature fuel cells[J]. ECS Trans,2007, 7(1):1217–1224.

[15] HUANG Z F, LIU Z J, HU H, et al. Evaluation of La0.6Sr0.4CoO3–δ–Ce0.85Sm0.075Nd0.075O2–δ composite cathodes for intermediate temperature solid oxide fuel cells[J]. Ceram Int, 2022, 48(11):16319–16325.

[16] DEVELOS-BAGARINAO K, DE VERO J, KISHIMOTO H, et al.Multilayered LSC and GDC:An approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells[J]. Nano Energy, 2018, 52:369–380.

[17] KIM Y T, SHIKAZONO N. Investigation of La0.6Sr0.4CoO3–δ–Gd0.1Ce0.9O2–δ composite cathodes with different volume ratios by three dimensional reconstruction[J]. Solid State Ion, 2017, 309:77–85.

[18] KIM Y T, SHIKAZONO N. Evaluation of electrochemical reaction mechanisms of La0.6Sr0.4CoO3–δ–Gd0.1Ce0.9O2–δ composite cathodes by3D numerical simulation[J]. Solid State Ion, 2018, 319:162–169.

[19] TAO Y K, SHAO J, WANG W G, et al. Optimisation and evaluation of La0.6Sr0.4CoO3–?δ cathode for intermediate temperature solid oxide fuel cells[J]. Fuel Cells, 2009, 9(5):679–683.

[20] JIANG Z Y, XIA C R, CHEN F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique[J]. Electrochim Acta, 2010, 55(11):3595–3605.

[21] JIANG S P. Activation, microstructure, and polarization of solid oxide fuel cell cathodes[J]. J Solid State Electrochem, 2007, 11(1):93–102.

[22] TASLEEM S, TAHIR M. Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production:A review[J]. Int J Hydrog Energy, 2020, 45(38):19078–19111.

[23] WU Z Y, ZHANG Y Y, LIU Z Q, et al. Rapid gas-phase synthesis of the perovskite-type BaCe0.7Zr0.1Y0.1Yb0.1O3–δ proton-conducting nanocrystalline electrolyte for intermediate-temperature solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2022, 14(42):47568–47577.

[24] LI S Q, REN Y H, BISWAS P, et al. Flame aerosol synthesis of nanostructured materials and functional devices:Processing, modeling,and diagnostics[J]. Prog Energy Combust Sci, 2016, 55:1–59.

[25] VENKATESAN S, MITZEL J, WEGNER K, et al. Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis[J]. Renew Sustain Energy Rev, 2022, 158:112080.

[26] ANGEL S, BRAUN M, ALKAN B, et al. Spray-flame synthesis of La FexCo1–xO3(x=0.2, 0.3)perovskite nanoparticles for oxygen evolution reaction in water splitting:Effect of precursor chemistry(acetates and nitrates)[J]. J Phys Chem A, 2023, 127(11):2564–2576.

[27] TARANCON A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater chem, 2010, 20(19):3799–3813

[28] CHIARELLO G L, ROSSETTI I, FORNI L, et al. Solvent nature effect in preparation of perovskites by flame-pyrolysis[J]. Appl Catal B Environ, 2007, 72(3–4):218–226.

[29] ROTH P. Particle synthesis in flames[J]. Proc Combust Inst, 2007,31(2):1773–1788.

[30]施王影,贾川,张永亮,等.固体氧化物燃料电池电化学阻抗谱差异化研究方法和分解[J].物理化学学报, 2019, 35(5):509–516.SHI Wangying, JIA Chuan, ZHANG Yongliang, et al. Acta Phys Chim Sin, 2019, 35(5):509–516.

[31]韦斐,王乐莹,罗凌虹,等.低温固体氧化物燃料电池层级骨架阴极的制备与性能[J].硅酸盐学报, 2023, 51(7):1763–1772.WEI Fei, WANG Leying, LUO Linghong, et al. J Chin Ceram Soc,2023, 51(7):1763–1772.

[32] ZHANG Y, SHEN L Y, WANG Y H, et al. Enhanced oxygen reduction kinetics of IT-SOFC cathode with PrBaCo2O5+δ/Gd0.1Ce1.9O2-δcoherent interface[J]. J Mater Chem A, 2022, 10(7):3495–3505.

基本信息:

DOI:10.14062/j.issn.0454-5648.20240112

中图分类号:TM911.4;TQ133.3

引用信息:

[1]王天齐,相龙凯,高展等.火焰法与喷雾干燥法共合成固体氧化物燃料电池阴极La_(0.6)Sr_(0.4)CoO_(3–δ)–Ce_(0.8)Gd_(0.2)O_(2–δ)的微观结构与性能分析[J].硅酸盐学报,2024,52(06):1810-1819.DOI:10.14062/j.issn.0454-5648.20240112.

基金信息:

上海市市级科技重大专项;; 上海市基础研究试点项目(21ZQ1400207);; 上海市科技创新行动计划(21DZ1206400)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文